bannerbannerbanner
полная версияУдивительные числа Фибоначчи

Александр Иванович Бородулин
Удивительные числа Фибоначчи

Полная версия

Теперь, давайте превратим километры в граммы. Дистанцию в восемьдесят километров мы превратим в гирьку весом восемьдесят грамм, а эти несколько километров в монетки, вес которых нам пока неизвестен.

Итак, на одной чаше весов находится гирька с двумя монетками, а на другой чаше десять таких же монет. Но нам нужно узнать точный вес. Поэтому, нужно убрать две монетки с чаши, где находится гирька. А для того, чтобы сохранить равновесие, нужно убрать две монетки и с другой чаши. Вот теперь, ясно, что восемь монет весят восемьдесят грамм. А значит одна монетка весит десять грамм.

Теперь, снова превратим граммы в километры, и убедимся, что Сергей, до встречи с Олегом, проехал десять километров. А его приятель Олег проехал восемьдесят километров, затем десять, затем еще десять. То есть сто километров, что в десять раз больше, чем десять.

И вот, теперь, можно с уверенностью ответить, что протяженность дороги от Нижнереченска до Верхнереченска составляет девяносто километров, как и от Верхнереченска до областного центра, как и расстояние, которое преодолел объект альфа к моменту времени Т0.

Вот так, даже не составляя систему уравнений, мы решили эту задачу. Для этого нам потребовалось, всего-навсего, наполнить задачу образами, и провести пошаговые рассуждения.

Некоторые могут сказать, что мы слишком долго "жевали". Но мы ответим, что длительное жевание, и в прямом, и в переносном смысле, способствует более легкому усвоению.

Эту же задачу можно превратить в загадку о возрасте. Например, брат старше своей сестры в два раза, хотя восемь лет назад он был в десять раз старше ее. Насколько лет брат старше сестры?

И при этом мы можем просто отгадывать эту загадку. Иными словами, решать задачу методом «проб и ошибок».

Некоторые возмутятся, и скажут, что это вообще антинаучно!

Ах, если бы, эти некоторые, только знали, сколько научных открытий было совершено именно этим методом!

Поэтому, можно, без всякого смущения, пробовать и проверять. Понятно, что возраст сестры более восьми полных лет. Иначе, задачка была бы бессмысленной! Предположим, что сестренке сейчас десять лет. Значит ее брату двадцать. Теперь, следует проверить, во сколько раз брат был старше сестры восемь лет назад? Ему было двенадцать лет , а ей два годика. При этом, выходит, что брат был старше сестры только в шесть раз. Значит, первое предположение оказалось ошибочным. А значит, нужно сделать следующее предположение! Но теперь, стоит немного призадуматься, в какую же сторону двигаться? Ну, поскольку, это пока непонятно, попробуем в сторону увеличения. Предположим, что сестре двенадцать лет, а брату соответственно двадцать четыре. Но, при таком раскладе, восемь лет назад брату было шестнадцать, а сестре четыре. Значит, второе предположение не только неправильное, но, даже, более неправильное, чем первое! А это значит, что двигаться нужно было в сторону уменьшения! А в сторону уменьшения остается один единственный вариант: сестренке девять лет. Теперь, проверив это предположение, можно убедиться, что оно правильное!

Да! Потребовалось целых три попытки! Но, при этом не потребовалось мучительно вспоминать сложные формулы или составлять систему уравнений!

Давайте убедимся, что метод проб и ошибок является, хотя и длительным, зато универсальным, то есть применимым для любых задач.

На одной из многочисленных рек, протекающих в нашей необъятной стране, по обоим берегам расположены два поселка. А вот моста в этом месте реки нет. Для того, чтобы жители каждого из поселков могли общаться друг с другом, налажена паромная переправа. Это, когда некоторая плавучая платформа, на которой могут разместиться и пассажиры и автомобили, пересекает реку то в одном направлении, то в обратном. Разумеется, что у многих жителей имелись свои лодки, как моторные, так и весельные.

Представим себе, что однажды майским утром одновременно от левого берега отчалили и паром и весельная лодка. Известно, что паром движется в два раза быстрее, чем весельная лодка. Когда паром достиг правого берега, лодка еще, разумеется, продолжала путь. А если быть точным, то доплыла до середины реки. Время на высадку и посадку пассажиров мы учитывать не будем, так как для решения нашей задачи оно не существенно. А наша задача состоит в том, чтобы узнать, какое расстояние проплыла лодка к моменту встречи с паромом, когда тот уже совершал обратный рейс. Ширина реки в этом месте составляет шестьсот метров.

Ответ почти готов! Немного больше, чем триста метров! Это правильно, но нам нужно узнать точно! Как будем рассуждать?

Паром отправился в обратный рейс, а лодка пересекла середину реки. С этого момента они двигались навстречу друг другу. В момент, когда они встретились они вместе проплыли триста метров. Но паром плыл в в два раза быстрее, и поэтому преодолел расстояние в два раза большее, чем преодолела лодка. То есть две части пути проделал паром и еще одну часть пути проделала лодка. Чтобы узнать длину этой части пути нам осталось разделить весь путь (половину ширины реки) на три. И мы получим сто метров. Осталось добавить длину половину реки и, уже точный, ответ готов! Четыресто метров.

Некоторые, с усмешкой, скажут, что эту задачу можно решить применяя формулу: R * (V1 * V2) / (V1 + V2)

А если бы нам было известно расстояние, которое проплыла лодка, а надо было бы узнать ширину реки? Нам потребовалась бы формула: (L2 + L2 * V1 / V2) / 2

Но неужели держать в памяти огромное количество формул, да при этом помнить какая формула к какой ситуации подходит, легче, чем научится просто рассуждать?

Мы можем переложить эту задачу в другую. Например, папа с сыном копают грядку. Папа копает в два раза быстрее, а конкретно метр за пять минут. Длина грядки шесть метров. За сколько времени они вскопают грядку, если начнут копать с разных концов. Для этого нам необходимо и достаточно узнать сколько вскопает сын, к моменту встречи. А к моменту встречи, они вскопают всю грядку. Причем отец вскопает две части грядки, а сын только одну часть. А эта часть составит треть от всей грядки. То есть два метра. А если папа копает метр за пять минут, то сын за десять. А два метра за двадцать. Ответ готов! Через двадцать минут мама с дочкой уже могут сажать в грядку семена.

А вот математик Леонардо, сын купца Гильермо из итальянского города Пиза, по прозвищу (которое ему не нравилось) «Фибоначчи» поставил для себя очень интересную задачу: Если купить пару крольчат (мальчика и девочку), которые через месяц станут взрослыми. А еще через месяц у них родится пара крольчат (мальчик и девочка). Которые через месяц тоже повзрослеют. А к тому времени у их родителей снова родится пара крольчат (мальчик и девочка). И вот так будет со всеми кроликами постоянно! Все кролики будут всегда здоровы и никогда не умрут.

Требуется узнать какое количество пар кроликов будет на ферме при таком воспроизводстве через заданное время?

Разумеется, с кроликами подобное воспроизводство не реально. Но решение этой идеализированной задачи привело к пониманию многих реальных процессов развития живых существ!

Для того, чтобы не утруждаться подсчетом кроликов, давайте переложим эту задачку на поле чудес из сказки «Буратино». Представим, что существует некое поле чудес, где из посаженной монетки за один день вырастает деревце, а затем каждый день на нем созревают монетки, которые падают, и из них, также, вырастают денежные деревца. При этом монетки в почве не растрачиваются.

Начнем? У нас есть одна монетка, которую мы посадим в это чудесное поле.

На следующий день на поле выросло деревце.

На следующий день на деревце созрела монетка, которая упала и зарылась.

На следующий день на деревце созрела монетка, которая упала и зарылась. И выросло еще одно деревце.

На следующий день на деревце созрела монетка, которая упала и зарылась. На вновь выросшем деревце созрела монетка, которая упала и зарылась. И выросло еще одно деревце.

На следующий день на трех деревцах созрели монетки, которые упали и зарылись. И выросли еще два деревца.

Пожалуй, пора подсчитать! В первый день была только одна монетка. Во второй день так и осталась эта одна монетка. В третий день уже стало две монетки. В четвертый день мы насчитаем три монетки. В пятый день у нас в распоряжении окажутся целых пять монеток. В шестой день на поле будут уже восемь монеток.

Сколько монеток будет в седьмой день? А сколько в десятый?

С каждым разом вести подсчет будет все труднее и труднее!

Нужно понять, по какому правилу развивается эта числовая последовательность?

Самая простая и понятная для нас числовая последовательность – это ряд натуральных чисел. Эта последовательность, как мы уже говорили, образуется по правилу: следующее число образуется прибавлением единички к текущему числу. Но это не единственное правило! Давайте приведем несколько примеров.

Будем складывать те же натуральные числа, выписанные каждое по два раза. При этом один ряд начнем с нуля, а другой уже с единички.

0_1_1_2_2_3_3_4_4_5_5

1_1_2_2_3_3_4_4_5_5_6

________________________

1_2_3_4_5_6_7_8_9_10_11

Другим способом, будем удваивать текущее число и вычитать предыдущее. Начнем с нуля и единички. Единичку умножим на два и вычтем ноль. Получим число два. Затем, два умножим на два и вычтем один. Получим три. Далее, три умножим на два и вычтем два. Получим четыре. И, так далее…

А если попробовать утраивать текущее число и вычитать удвоенное предыдущее? Единичку умножим на три и вычтем дважды ноль. Получим три. Три умножим на три и вычтем удвоенную единичку. Получим семь. Семь умножим на три и вычтем удвоенное число три. Получим пятнадцать…

Ерунда какая-то получается! Но мы ведь не сдадимся? Посмотрим на получившийся ряд: ноль, один, три, семь, пятнадцать. Каждое последующее число на единичку больше удвоенного текущего. Попробуем это исправить, и из утроенного текущего числа вычитаем не только удвоенное предыдущее, а еще единичку.

 

Единичку умножим на три, вычтем дважды ноль и вычтем единичку. Получим два. Два умножим на три, вычтем удвоенную единичку и вычтем единичку, как постоянно вычитаемое число. Получим три. Вроде получается. Но необходимо удостовериться! Утраиваем три, вычитаем удвоенное число два, и, как повелось, вычитаем единичку. Получим четыре. Можно и дальше продолжать, но, уже и так, видно, что мы задали правильное образование ряда.

Теперь, мы можем уже смело утверждать, что если умножить текущее число на четыре, и на пять, и на шесть, и вычитать предыдущее, умноженное на три, и на четыре, и на пять, соответственно, а затем вычитать каждый раз два, три, четыре, мы будем неизменно получать ряд натуральных чисел.

А также, можем к предыдущему числу прибавлять всякий раз число два. Проверим! К нулю прибавим два. Получим два. К единичке прибавим два. Получим три. К двум прибавим два. Получим четыре. К трем прибавим два получим пять. Как говорится, что и требовалось доказать!

Вот сколько способов образования ряда натуральных чисел мы рассмотрели.

Вполне можно предположить, что и ряд «Фибоначчи» тоже образуется по какому-то определенному правилу. Определив это правило, мы можем вычислять количество монет, которое будет на поле чудес в любой день.

Но, сначала давайте образуем числовой ряд по правилу: следующее число образуется как удвоенное текущее, из которого вычтено предыдущее и добавлена единичка. Как обычно, для начала, возьмем ноль и один.

Один умножить на два минус ноль и плюс один равно трем.

Три умножить на два минус один и плюс один равно шести.

Шесть умножить на два минус три и плюс один равно десяти.

Десять умножить на два минус шесть и плюс один равно пятнадцати.

Пятнадцать умножить на два минус десять и плюс один равно двадцати одному.

Ну, пока достаточно. Теперь мы видим ряд каких-то чисел, которые возрастают, но не так плавно, как ряд натуральных чисел. Если между двумя последовательными числами натурального ряда разность постоянно равна единице, то в этом, пока непонятном, ряду разность между соседними числами постоянно увеличивается. Давайте выпишем эти разницы.

Рейтинг@Mail.ru