bannerbannerbanner
Сварка

Евгений Банников
Сварка

Полная версия

Сварка трением

Сварка трением относится к процессам, в которых используется взаимное перемещение свариваемых поверхностей, давление и кратковременный нагрев. Сварка трением происходит в твердом состоянии при взаимном скольжении двух заготовок, сжатых силой Р. Работа, совершаемая силами трения при скольжении, превращается в теплоту, что приводит к интенсивному нагреву трущихся поверхностей. Таким образом, для сварки используется тепло, которое выделяется в стыке при трении двух поверхностей в результате преобразования механической энергии в тепловую. Трение поверхностей осуществляют вращением, возвратно-поступательным перемещением сжатых заготовок и колебательным перемещением одной из соединяемых деталей по отношению к другой.

Схемы сварки трением показаны на рисунке 23:

а) с вращением одной детали;

б) с вращающейся вставкой;

в) с вращением в противоположные стороны;

г) с возвратно-поступательным движением одной детали.

В результате нагрева и сжатия происходит совместная пластическая деформация. Сварное соединение образуется вследствие возникновения металлических связей между чистыми (ювенильными) контактирующими поверхностями свариваемых заготовок. На сопряженных деталях в месте стыка происходит интенсивный нагрев контактирующих поверхностей. Например, для углеродистых сталей обыкновенного качества температура достигает 900–1350 °C. При достижении температуры сварки процесс трения должен быть резко прекращен.

Окисные пленки на соединяемых поверхностях разрушаются в результате трения и удаляются за счет пластической деформации в радиальных направлениях. Сварка заканчивается естественным охлаждением деталей при повышенном сжимающем осевом усилии.

Выделяют несколько типов сварных соединений сваркой трением, которые показаны на рисунке 24:

а) сварка стержней встык;

б) сварка труб встык;

в) сварка встык стержня с трубой;

г) приварка стержня к листу;

д) приварка трубы к листу;

е) приварка стержня к массивной детали.

Основные технологические параметры сварки трением:

• скорость относительного перемещения (вращения) свариваемых поверхностей;

• продолжительность нагрева;

• удельное усилие сжатия заготовок;

• пластическая деформация, т. е. величина осадки;

• площадь сечения и конфигурация заготовки.

Рис. 23.

Схемы сварки трением

Преимущества стыковой сварки:

• высокая производительность;

• высокое и стабильное качество сварного соединения;

• возможность сварки разнородных металлов и сплавов;

• отсутствие вредных выделений;

• высокие энергетические показатели (например, при сварке трением углеродистой стали удельная электрическая мощность равна 15–20 Вт/мм2, а при электрической контактной сварке – 120–150 Вт/мм2);

• высокая скорость соединения деталей (машинное время в пределах 2–40 секунд);

• высокая степень механизации и автоматизации процесса;

• возможность использовать для сварки трением различные типы общепромышленных токарных и сверлильных станков.

Недостатки сварки трением:

• для каждого металла необходимо разрабатывать технологические режимы в зависимости от состава материала и геометрических параметров;

• необходимость контроля момента сварки с последующим прекращением процесса;

• необходим механизм давления для создания осевых усилий сжатия.

Ультразвуковая сварка

Волны, распространяющиеся в упругих средах (газах, жидкостях, твердых телах), называются в физике волнами малой интенсивности. Эти волны вызывают слабые механические возмущения. Звуковые волны, воздействуя на органы слуха, способны вызывать звуковые ощущения, если частоты звуковых колебаний лежат в пределах 16–20 000 Гц. Эта область называется областью слышимых звуков. Упругие волны с частотами 20–100 кГц называются ультразвуковыми.


Рис. 24.

Типы соединений сварки трением


Ультразвук («ультра» означает «сверх») – волнообразно распространяющееся колебательное движение частиц твердых тел, жидкостей и газов, происходящее с частотами более 16 000 колебаний в секунду. В физике принято измерять частоты колебаний в герцах (1 Гц = 1 колебанию в 1 секунду). Ультразвук назван так потому, что основная часть людей не слышит колебания свыше 16 кГц.

Сущность процесса ультразвуковой сварки состоит в том, что при приложении колебаний высокой (ультразвуковой) частоты к свариваемым деталям в них возникают касательные напряжения, вызывающие пластические деформации материала свариваемых поверхностей. В результате механических колебаний в месте соединения металлов развивается повышенная температура, зависящая от свойств материала. Эта температура способствует возникновению пластического состояния материалов и их соединению. В местах сварки образуются совместные кристаллы, обеспечивающие прочность сварного соединения. Таким образом, сварка с применением ультразвука относится к процессам, в которых используют давление, нагрев и взаимное трение свариваемых поверхностей. В этом способе сварки тепловая энергия не подводится извне, а образуется в результате действия сил трения, поэтому ультразвуковая сварка относится к механическому классу. Силы трения возникают в результате действия механических колебаний с ультразвуковой частотой на заготовки, сжатые осевой силой Р.

Механические колебания создаются в специальных преобразователях, которые преобразуют высокочастотные колебания электрического тока в механические колебания рабочего инструмента.

Для этих целей используют магнитострикционный эффект, основанный на изменении размеров некоторых материалов при воздействии на них переменного магнитного поля. Магнитострикция как физический эффект была открыта в 1842 г. Дж. П. Джоулем. Название было дано от латинского слов strictio, что означает сжатие, натягивание. В настоящее время для магнитострикционных преобразователей используют материалы на основе ферромагнитных сплавов.

Переменный электрический ток создает в магнитострикционном материале преобразователя переменное магнитное поле. Изменения размеров магнитострикционного материала происходят при каждом полупериоде тока, т. е. упругие колебания генерируются с двойной частотой относительно частоты переменного тока. Изменения размеров магнитострикционных материалов очень незначительны, Поэтому для передачи к месту сварки механических колебаний, увеличения амплитуды и концентрации энергии колебаний используют волноводы. В большинстве случаев они имеют сужающуюся форму.

В зависимости от конструкции волновода и крепления инструмента в зоне сварки можно получить продольные, поперечные и крутильные колебания инструмента. Их амплитуда обычно бывает в пределах 10–30 мкм.

Мощность генераторов для сварки ультразвуком при рабочей частоте 18–25 кГц составляет от 0,4 кВт и до 5 кВт. Применяются также генераторы с частотами: 44, 66, 88 кГц.

На рисунке 25 показаны различные виды волноводов (концентраторов) для увеличения амплитуды колебаний и передачи их в зону сварки.


Рис. 25. Виды волноводов (концентраторов):

1 – ступенчатый; 2 – конический; 3 – сложной геометрической формы


Стержневой магнитострикционный преобразователь показан на рисунке 26а, он состоит из сердечника 1 и катушки 2. Переменный ток возбуждает в катушке переменное магнитное поле, которое за счет магнитострикционного эффекта в направлении оси сердечника создает упругие напряжения и деформации, т. е. сердечник совершает продольные механические колебания.

Продольные механические колебания, возбуждаемые в преобразователе, подаются на инструмент или преобразуются в другие типы колебаний, обусловленные технологией. Это реализуется изменением конструкции волновода и инструмента.

Устройства для преобразования колебаний показаны на рисунке 26б.

Изгибные колебания получают при помощи волновода продольных колебаний, если к нему присоединить стержень 3, имеющий резонансные размеры по отношению к изгибным колебаниям заданной частоты. Крутильные колебания передаются в зону сварки, например способом, показанным на рисунке 26б.


Рис. 26.

Устройства для преобразования колебаний:

а – с помощью волновода продольных колебаний; б – с помощью волновода крутильных колебаний


На рисунке 27 показана принципиальная схема ультразвуковой сварки. При сварке ультразвуком свариваемые заготовки размещают на опоре 6. Наконечник рабочего инструмента 2 соединен с магнитострикционным преобразователем 4 через трансформатор продольных колебаний, представляющий собой вместе с рабочим инструментом 2 волноотвод 3. Нормальная сжимающая сила Р создается моментом М в узле колебаний.


Рис. 27.

Принципиальная схема ультразвуковой сварки:

1 – свариваемые детали; 2 – инструмент; 3 – волновод; 4 – преобразователь; 5 – генератор ультразвуковых колебаний; 6 – опора


В результате ультразвуковых колебаний в тонких слоях контактирующих поверхностей создаются сдвиговые деформации, разрушающие поверхностные пленки. При этом тонкие поверхностные слои металла нагреваются, металл в этих слоях немного размягчается и под действием сжимающего усилия пластически деформируется. При сближении поверхностей на расстояние действия межатомных сил между ними возникает прочная связь.

 

Экспериментально установлено, что прочность соединений, выполненных сваркой ультразвуком, во многих случаях превосходит прочность соединения, полученного контактной сваркой.

Сравнительно небольшое тепловое воздействие на соединяемые материалы обеспечивает минимальное изменение их структуры, механических и других свойств. Например, при сварке меди температура в зоне контакта не превышает 600 °C. При сварке алюминия и его сплавов температура составляет 200–300 °C. Это особенно важно при сварке химически активных металлов.

Этим видом сварки соединяют металлы, сплавы металлов и различные материалы в различных сочетаниях толщиной от 0,001 мм и до нескольких миллиметров. При сварке пластмасс к заготовкам подводятся поперечные ультразвуковые колебания.

В настоящее время ультразвуковая сварка находит широкое применение в радиоэлектронной промышленности, приборостроении, авиационной, космической и многих других областях.

Сварка ультразвуком применяется для точечных и шовных соединений внахлестку и по замкнутому контуру.

Достоинства сварки ультразвуком:

• незначительный нагрев деталей (в пределах пластической деформации);

• для получения сварного соединения требуется незначительная электрическая мощность;

• подготовка деталей ограничивается практически их обезжириванием;

• возможность производить сварку деталей с оксидированными и плакированными поверхностями, а также с покрытиями в виде изоляционных пленок;

• возможность сварки разнородных металлов и материалов, в т. ч. и пластмасс;

• возможность сварки ультратонких листов до 0,001 мм;

• сваркой ультразвуком можно соединять разнородные материалы в пакет;

• ультразвуковая сварка применима для соединения трудносвариваемых металлов, например молибдена, вольфрама, тантала, циркония;

• сварка происходит практически мгновенно, в момент включения УЗ-генератора;

• отсутствие вредных выделений при сварке;

• высокая степень автоматизации процесса сварки;

• высокая скорость сварки (до 150 м/час) и прочность соединения.

Недостатки сварки ультразвуком:

• применение специальных генераторов ультразвука;

• относительно небольшой диапазон толщин свариваемых материалов;

• вредное воздействие ультразвука на организм человека;

• необходимость применения устройств для предварительного сжатия деталей.

Глава 3
Термомеханический класс сварки

Классификация видов термомеханической сварки

Термомеханический класс сварки основан на использовании совместного действия тепла и давления, вводимых в зону сварки. Термомеханический, или термопрессовый, класс сварки по принципу действия во многом аналогичен рассмотренному выше механическому классу сварки. Основное отличие в том, что тепловая энергия вводится в зону сварки извне. Тепловая энергия образуется при прохождении электрического тока через сопротивление по границе «металл—металл», введением теплоты от газовой горелки, электрическим разрядом от конденсатора. Используется также тепловая энергия от дугового разряда.

В соответствии с этим термомеханический класс сварки разделяют на следующие виды:

• электроконтактная сварка;

• диффузная сварка;

• газопрессовая сварка;

• дугопрессовая сварка;

• сварка аккумулированной энергией.

Электроконтактная сварка

Электроконтактная сварка является одним из самых распространенных видов сварки металлов давлением. Электроконтактная сварка относится к видам сварки с кратковременным нагревом места соединения деталей без оплавления или с оплавлением и осадкой разогретых заготовок. Характерная особенность этих процессов – пластическая деформация, в ходе которой формируется сварное соединение. В процессе этой деформации происходит удаление окислов из зоны сварки, устранение раковин и местное уплотнение металла.

Способ электроконтактной сварки изобрел русский инженер Н. Н. Бенардос, который в 1885 году получил патент на способ точечной электросварки клещами с угольными электродами. Позднее этот способ усовершенствовали заменой угольных электродов на медные, и появились новые способы сварки: роликовая, стыковая, рельефная и т. д.

Место соединения разогревается проходящим по металлу электрическим током, при этом максимальное количество теплоты выделяется в месте сварочного контакта. Количество теплоты, выделяемой в зоне сварки, определяют по формуле Джоуля-Ленца (Q = I2 × R × t):

Q = 0,24 × I2 × R Δt.

где Q – количество тепла (кал.);

I – сила тока сварки (А);

R – полное сопротивление зоны сварки (Ом);

t – время протекания тока сварки (с).

Q = I2 × R Δt,

где Q – количество теплоты (Дж),

остальные параметры по формуле 3.1.


Основное влияние на нагрев оказывает сила сварочного тока. Например, при данном количестве необходимой теплоты, расходуемой за один сварочный цикл, увеличение силы тока в два раза приведет к уменьшению времени сварки более чем в четыре раза.

Полное сопротивление сварочного контура состоит из электросопротивлений выступающих концов заготовки L, свариваемых заготовок Rзаг, сварочного контакта Rк и электросопротивления между электродами и заготовками Rэл (рис. 28 а)


Рис. 28.

Схема электроконтактной сварки (а), схема контакта заготовки (б)


Полное сопротивление сварочного контура равно:

R = Rзаг + Rк + Rэл

Сопротивление сварочного контакта зависит от таких факторов, как чистота поверхностей деталей в месте сварки, наличие окисных пленок металла, сила сжатия заготовок. Например, при сварке неочищенных заготовок сопротивление в месте контакта изменяется в весьма широких пределах. Это приводит к изменению температуры нагрева, стабильности прочностных показателей, браку и износу электродов.

При нагреве в месте контакта сопротивление металла возрастает, следовательно, еще более возрастает количество выделяющейся теплоты и резко ускоряется процесс сварки. Применяя для контактной сварки токи больших величин, удается производить сварку за десятые и сотые доли секунды.

Контактную сварку классифицируют по типу сварного соединения, определяющего вид сварочной машины, и по роду тока, питающего сварочный трансформатор.

По типу сварного соединения различают:

• стыковую контактную сварку;

• точечную контактную сварку;

• шовную (роликовую) контактную сварку.

По роду сварочного тока выделяют контактную сварку:

• переменным током;

• импульсом постоянного тока;

• аккумулированной энергией.

Схемы основных современных способов контактной сварки представлены на рисунке 29. Эти способы отличаются сопряжением деталей в месте соединения, особенностями токоподвода и приложением сварочного давления.


Рис. 29.

Основные способы контактной электросварки:

а – стыковая сварка; б – точечная сварка; в – шовная (роликовая) сварка; г – рельефная сварка


Выпускаемые машины для электроконтактной сварки состоят из двух основных частей: электрической и механической.

Электрическая часть сварочной машины состоит из:

• трансформатора с первичной обмоткой на напряжение 220/380 В и вторичной обмоткой на напряжение 1–20 В, при силе тока во вторичной обмотке от нескольких десятков до сотен килоампер;

• регулятора времени;

• прерывателя тока в цепи первичной обмотки;

• токоподводящих устройств.

Механическая часть машины для контактной электросварки включает в себя:

• устройства фиксации деталей;

• механизмы для создания, выдержки и снятия давления на заготовки.

Машины для контактной сварки работают по заданной программе с целью изменения сварочного тока и усилия сжатия. График изменения сварочного тока и усилия сжатия, совмещенных во времени, называют циклограммой.

Контактная электросварка является высокопроизводительным процессом. Этот вид сварки легко механизируется и автоматизируется. Относительная простота в обслуживании способствует широкому применению контактной сварки в строительстве, автомобилестроении, приборостроении и многих других областях техники и производства.

Стыковая контактная электросварка

Различают следующие способы стыковой сварки (рис. 29а):

• стыковая сварка сопротивлением;

• стыковая сварка оплавлением.


Стыковая контактная сварка сопротивлением – разновидность контактной сварки, при которой заготовки, установленные и закрепленные в стыковой машине, прижимают одну к другой усилием определенной величины, после чего пропускают по ним электрический ток. При нагревании металла в зоне сварки до пластического состояния происходит осадка. Ток выключают до окончания осадки.

Недостаток этого способа в том, что им можно соединять детали малого сечения (до 100 мм2) с простым периметром (круг, квадрат, прямоугольник и т. п.). Детали при этом способе требуют тщательной очистки.


Стыковая сварка оплавлением. При этом способе детали медленно сближают при включенном источнике тока. Соприкосновение поверхностей при медленном сближении приводит к образованию отдельных микроконтактов, через которые протекает ток высокой плотности. Происходит взрывное оплавление микроконтактов. При этом под действием магнитного поля расплавленный и кипящий металл выбрасывается наружу. Последующее сжатие заготовок приводит к образованию сварного шва. Осадку деталей начинают при включенном токе и завершают при выключенном токе. При этом используют непрерывное или прерывистое оплавление места сварки.

Сварка оплавлением имеет преимущества перед сваркой сопротивлением в том, что при оплавлении выравниваются все неровности стыка, а оксиды и загрязнения удаляются. Поэтому не требуется особой подготовки места соединения, можно сваривать детали с сечением сложной формы. Сваркой оплавлением соединяют разнородные металлы – быстрорежущие, углеродистые стали, медь, алюминий.

Наиболее распространенными изделиями, изготовляемыми стыковой сваркой, являются элементы трубчатых конструкций, кольца, колеса, инструмент, рельсы, арматура для строительства.

Точечная контактная электросварка

Заготовки соединяют сваркой в отдельных местах, условно называемых точками.

Размеры и структура точки, определяющие прочность соединения, зависят от различных факторов. Форма и размеры контактной поверхности электродов, сила сварочного тока, время его протекания через заготовки, усилия сжатия и состояния поверхностей заготовок – это основные технологические параметры точечной сварки.

При этом способе соединяемые детали внахлестку расположены под сжимающими электродами. К электродам подводится электрический ток. В момент прохождения тока заготовки нагреваются, особенно быстро нагреваются участки, прилегающие к контакту между электродами. При этом металл расплавляется, и под действием сжимающих усилий капля расплавленного металла сплющивается на стыке «деталь-деталь». В момент образования в зоне сварки расплавленного ядра заданных размеров ток выключают. После выключения тока заготовки кратковременно выдерживают между электродами под действием усилия сжатия, в результате чего происходит охлаждение зоны сварки, кристаллизация расплавленного металла и уменьшение усадочной раковины в ядре сварной точки. Электроды оставляют характерный отпечаток в виде точки.

Точечной сваркой можно сваривать листовые заготовки одинаковой или разной толщины, пересекающиеся стержни, листовые заготовки со стержнями или профильными заготовками (уголками, швеллерами, таврами и т. п.).


Рис. 30.

Схема точечной электросварки:

а – схема процесса; б – сечение сварной точки; Р – давление сжатия заготовок

 

Точечную сварку применяют для соединения заготовок из сталей различных марок, а также из цветных металлов и их сплавов толщиной от сотых долей миллиметра до 35 мм.

Сварка, в зависимости от расположения электродов по отношению к свариваемым заготовкам, может быть двухсторонней и односторонней.

Типы сварных соединений точечной контактной сваркой показаны на рисунке 31.

Точечной сваркой изготавливают штампосварные заготовки – при соединении отдельных штампованных элементов сварными точками, что упрощает процесс изготовления сварных узлов. Точечная сварка широко применяется при производстве автомобилей и в авторемонтных мастерских – при замене элементов кузова.


Рис. 31.

Типы сварных соединений точечной сваркой


Можно выделить рельефную сварку как вид контактной одновременной многоточечной сварки.

Рельефная сварка характерна тем, что на одной из заготовок предварительно изготавливают выступы (рельефы) – круглой, кольцевой, продолговатой или иной формы. Сварку выполняют одновременно по всем рельефам, что обеспечивает высокую производительность процесса.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23 
Рейтинг@Mail.ru