Далеко не всю космическую историю можно наблюдать непосредственно. События, имевшие место за несколько сотен тысяч лет до окончания стадии огненного шара и спустя около полумиллиона лет после него, чрезвычайно сложно поддаются изучению. В первом случае это происходит из-за слишком большого количества света (представьте, что вы пытаетесь посмотреть сквозь стену огня), а во втором – из-за слишком малого его количества (представьте, что вы пытаетесь рассмотреть пылинки в воздухе между вами и стеной огня). Однако реликтовое излучение, говорящее нам, что произошло прямо посередине между этими событиями, позволяет произвести экстраполяцию в обоих направлениях и получить убедительные данные о том, как развивалась Вселенная на протяжении 13,8 миллиарда лет, начиная с первой миллиардной миллиардной миллиардной доли секунды.
Итак, начнем?
Вначале была сингулярность.
Возможно. Сингулярность – это первое, что приходит на ум большинству людей, когда они думают о Большом взрыве: бесконечно плотная точка, взрыв которой привел к возникновению Вселенной. Правда, сингулярность не обязательно должна представлять собой точку. Это может быть просто бесконечно плотное состояние бесконечно большой Вселенной. И, как уже говорилось выше, взрыва как такового не было, поскольку взрыв подразумевает расширение в чем-то, а не расширение всего. Идея о том, что все началось с сингулярности, основана на наблюдении за текущим расширением Вселенной, применении уравнений гравитационного поля Эйнштейна и экстраполяции в обратном направлении. Однако эта сингулярность, возможно, никогда не имела места. По мнению большинства физиков, то, что произошло через долю секунды после истинного «начала» Вселенной, представляло собой драматическое сверхрасширение, которое просто стерло все следы того, что происходило до этого. Таким образом, сингулярность – это лишь одна из многих гипотез о том, как все началось.
Также существует вопрос о том, что было до сингулярности. В зависимости от того, кому вы его зададите, этот вопрос может оказаться бессмыслицей (поскольку сингулярность – начало времени и пространства, никакого «до» нее не было) или представлять собой один из наиболее важных вопросов в космологии (поскольку сингулярность может являться конечной точкой предыдущего вселенского цикла, состоящего из Большого взрыва и Большого сжатия). Мы поговорим о второй возможности в главе 7, а пока о сингулярности вам достаточно знать лишь то, что она могла иметь место. Даже «отмотав назад» расширение Вселенной, мы ничего не смогли бы сказать об этой точке, поскольку сингулярность представляет собой настолько экстремальное состояние материи и энергии, что наши познания в области физики не позволяют его описать.
Для физика сингулярность – патологическое явление. Это то место в уравнениях, где некая величина, которая до сих пор вела себя предсказуемым образом (например, плотность вещества), начинает стремиться к бесконечности, что делает невозможным получение какого-либо осмысленного результата. В большинстве случаев столкновение с сингулярностью говорит о том, что в ваших вычислениях что-то пошло не так и вам нужно вернуться к началу. Обнаружить в своей теории сингулярность все равно что получить от своего навигатора инструкцию подъехать к краю озера, разобрать свой автомобиль, собрать из него лодку и переправиться на ней на другой берег. Возможно, это действительно единственный способ добраться до нужного места, однако, скорее всего, вы просто где-то свернули не туда.
Но на практике свести на нет физику, какой мы ее знаем, можно и без истинной сингулярности. Каждый раз, когда в очень малом пространстве оказывается очень много энергии, вам приходится одновременно иметь дело и с квантовой механикой (теорией, описывающей физику частиц), и с общей теорией относительности (теорией гравитации). В обычных обстоятельствах вы можете учитывать что-то одно, поскольку гравитация, как правило, имеет большое значение при работе с массивными объектами, что позволяет игнорировать отдельные частицы, тогда как квантовая механика в основном важна в микромире, где вклад гравитации оказывается несущественным. Однако при столкновении с экстремальной плотностью вам приходится использовать обе теории, а они очень плохо сочетаются друг с другом. Экстремальная гравитация предполагает существование отдельных массивных объектов, которые искривляют пространство и изменяют течение времени, а квантовая механика позволяет частицам проходить сквозь твердые преграды или существовать в виде облаков вероятностей. Фундаментальная несовместимость теорий для очень массивных и очень маленьких объектов намекает нам на то направление, в котором следует двигаться при создании новых, более совершенных теорий. Однако это также сильно затрудняет изучение того, что происходило на очень ранних этапах развития Вселенной.
Отсутствие полноценной теории квантовой гравитации (примиряющей физику элементарных частиц с гравитацией) ограничивает нас в том, как далеко мы можем зайти в экстраполяции данных о Вселенной, получая при этом осмысленный результат. Мы неизбежно достигаем той точки, когда дальнейшее продвижение оказывается невозможным. В этот момент значения плотности вырастают настолько, что эффекты экстремальной гравитации предположительно начинают конкурировать с нечеткостью, присущей квантовой механике, и мы просто не знаем, что с этим делать. Приводит ли сильная гравитация к формированию микроскопических черных дыр, которые затем случайным образом появляются и исчезают из-за квантовой неопределенности? Имеет ли время хоть какое-то значение тогда, когда форма пространства является не более предсказуемой, чем результат броска игральной кости? Как ведут себя пространство и время в микромасштабе – как отдельные частицы или как волны, которые интерферируют друг с другом? Существуют ли кротовые норы? Существуют ли драконы? Мы понятия не имеем.
Однако, поскольку нам необходимо точно определить момент возникновения этой путаницы, мы используем такую единицу, как планковское время[22], которая охватывает промежуток времени от нуля до примерно 10-43 секунды, что соответствует одной секунде, деленной на 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 (это 1 с 43 нулями). Достаточно сказать, что этот период невообразимо короткий. И, чтобы было ясно, дело не в том, что мы можем объяснить все, что произошло после окончания этого периода, а в том, что в настоящее время мы определенно не можем объяснить ничего из того, что произошло до его окончания.
Подведем промежуточные итоги: возможно, сингулярность имела место. Если это так, то за ней сразу же последовала эпоха, называемая планковским временем, о которой мы мало что можем сказать.
По правде говоря, вся временная шкала ранних этапов развития Вселенной по-прежнему является результатом экстраполяции, и я с готовностью признаю, что ей не следует полностью доверять. Вселенная, которая расширяется, начиная с сингулярности, проходит через невообразимый диапазон температур, от практически бесконечно высокого значения в точке сингулярности до прохладной комфортной среды современного космоса, температура которого примерно на 3 градуса превышает абсолютный нуль. Что мы можем сделать, так это выдвинуть предположения о том, какой должна быть физика во всех этих средах, что вы и видите в данной главе. И хотя стандартная теория постепенного расширения, начавшегося с сингулярности, имеет серьезные недочеты (с которыми мы вскоре столкнемся), мы все же можем многое узнать о том, как работает физика, размышляя, что могло бы произойти, будь стандартная теория верна.
Согласно стандартной теории Большого взрыва, после Планковской эпохи наступила эпоха великого объединения. (Под термином «эпоха» я подразумеваю промежуток времени продолжительностью около 10-35 секунды). Эпоха великого объединения была названа в честь Теории великого объединения (ТВО), которая представляет собой утопический идеал «единой» теории, описывающей, как все силы физики элементарных частиц работали вместе в экстремальных условиях ранней Вселенной. Несмотря на то что Вселенная быстро остывала, она все еще была настолько горячей, что количество энергии в каждой точке пространства в триллион раз превышало энергию, генерируемую самыми мощными столкновениями в наших самых совершенных ускорителях частиц. К сожалению, отчасти вследствие такой огромной разницы, не позволяющей нам провести экспериментальные испытания, эта теория до сих пор находится на стадии разработки. Тем не менее, мы можем многое сказать о ней и о том, чем она отличается от того, что мы наблюдаем сегодня.
В обычных условиях современной Вселенной каждая фундаментальная сила природы играет особую роль. Гравитация не дает нам всем улететь с Земли, электричество обеспечивает нас светом, магнетизм удерживает список покупок на дверце холодильника, слабое ядерное взаимодействие гарантирует стабильную работу ядерных реакторов, а сильное ядерное взаимодействие не дает распасться протонам и нейтронам, составляющим наши тела. Однако физические законы, определяющие работу этих сил, их взаимодействие друг с другом и возможность их различения, зависят от условий, в которых проводятся измерения. В частности, от энергии окружающей среды или от температуры. При достаточно высоких уровнях энергии эти силы начинают сливаться и объединяться, изменяя характер взаимодействия частиц и сами законы физики.
Давно известно, что даже в обычных условиях электричество и магнетизм являются аспектами одного и того же явления, на основе которого работают электромагниты и динамо-машины генерируют электричество.
Подобная возможность объединения – просто подарок для физиков. Мы всегда очень радуемся, когда можем взять два сложных явления и сказать: «На самом деле, если вы посмотрите на них под этим углом, вы увидите, что они представляют собой одно и то же». В некотором смысле в этом и заключается конечная цель теоретической физики – отыскать способ объединения всех сложных вещей, которые нас окружают, в нечто красивое, компактное и простое, что всего лишь кажется сложным с нашей странной низкоэнергетической позиции.
В физике элементарных частиц эта попытка получила название Великого объединения. Основываясь на теории и результатах экстраполяции данных, полученных в ходе лабораторных экспериментов, мы считаем, что при очень высоких уровнях энергии электромагнетизм, слабое и сильное ядерные взаимодействия объединяются, превращаясь в нечто совершенно иное. При этом нет никакого способа их различить, поскольку все силы являются компонентами одной и той же смеси частиц и энергии, описываемой Теорией великого объединения. Было разработано и предложено несколько ТВО, однако сложность достижения тех уровней энергии, где происходит объединение, затрудняет их подтверждение или исключение, поэтому мы назовем это «областью активных исследований», которой не помешает дополнительное финансирование.
Вероятно, вы заметили, что гравитация не была приглашена на вечеринку ТВО. Чтобы включить гравитацию в общую картину, нам нужно нечто более грандиозное и всеобъемлющее, чем Теория великого объединения, – нам нужна Теория всего (ТВ). Большинство физиков считают, что в конце Планковской эпохи гравитация была каким-то образом объединена с другими силами (с драконами или с чем-то еще, что тогда имело место). Однако, как мы уже говорили, общая теория относительности и физика элементарных частиц не очень хорошо работают вместе в их нынешнем виде, поэтому в разработке Теории всего мы достигли даже меньшего прогресса, чем в разработке ТВО. Многие люди в качестве возможной окончательной ТВ рассматривают теорию струн. Однако если ТВО трудно проверить экспериментально, то проверить ТВ фактически невозможно, по крайней мере, с помощью тех технологий, которые мы в состоянии себе представить. Время от времени вспыхивают споры о том, верно ли это и можно ли считать непроверяемые теории наукой. Я не думаю, что ситуация настолько ужасна, как нам кажется. Космология может помочь решить данную проблему (и я говорю это не просто потому, что я сама космолог). В некоторых случаях, применив творческий подход, можно найти заманчивые возможности для проверки предсказаний теории струн и связанных с ней идей путем наблюдения за космосом. Если нам удастся пережить пару апокалипсисов, описанных в следующих нескольких главах, мы увидим, что космология способна рассказать о фундаментальной структуре Вселенной гораздо больше, чем любой эксперимент с частицами.
Однако давайте вернемся к истории. Мы оставили позади Планковскую эпоху с присущей ей квантово-гравитационной путаницей и наслаждаемся единством фундаментальных взаимодействий, свойственным чуть менее спекулятивной эпохе Великого объединения.
То, что произошло дальше, все еще остается предметом дискуссий, однако большинство космологов согласны в том, что примерно в этот момент Вселенная пережила процесс, который мы называем космической инфляцией. По каким-то причинам, нам не до конца понятным, расширение Вселенной внезапно ускорилось, и та область, которой предстояло стать нашей наблюдаемой Вселенной, увеличилась в размерах более чем в 100 триллионов триллионов (т. е. 1026) раз. Разумеется, при этом она достигла всего лишь размера пляжного мяча, однако, учитывая, что начальная точка была неизмеримо меньше любой известной нам частицы, а процесс расширения занял примерно 10-34 секунды, это не может не произвести впечатление.
Теория инфляции позволила решить несколько по-настоящему сложных проблем, свойственных стандартной модели Большого взрыва. Одна из них была связана со странной однородностью космического микроволнового фонового излучения, а другая – с крошечными отклонениями в нем.
Проблема однородности заключается в том, что стандартная космологическая модель Большого взрыва никак не объясняет тот факт, что вся наблюдаемая Вселенная, включая области, находящиеся на противоположных сторонах неба, имела одну и ту же температуру на ранних стадиях развития. Изучая отголоски Большого взрыва, мы видим, что она была одинаковой везде, что, если подумать, кажется весьма странным совпадением. Как правило, два объекта могут иметь одинаковую температуру в том случае, если они находятся в состоянии, которое мы называем термодинамическим равновесием. Это означает, что у таких объектов есть возможность обмениваться теплом, а также время для этого. Если вы оставите чашку кофе в комнате на достаточно долгое время, кофе и воздух будут взаимодействовать друг с другом, и в итоге вы получите чашку с кофе комнатной температуры и комнату с немного более теплым воздухом. Проблема стандартной картины ранней Вселенной состоит в том, что она не предусматривает ситуацию, в которой две отдаленные области могли бы взаимодействовать друг с другом и достичь теплового равновесия. Если мы возьмем две точки на противоположных сторонах небосвода и выясним расстояние между ними сейчас и расстояние, которое разделяло их в самом начале, 13,8 миллиарда лет назад, мы обнаружим, что в истории Вселенной не было момента, когда они находились достаточно близко для того, чтобы лучи света могли перемещаться между ними, уравновешивая их температуру. Луч света, покинувший одну из этих точек в момент возникновения Вселенной, даже за 13,8 миллиарда лет не успел бы преодолеть расстояние до другой точки. Они всегда находились вне горизонтов друг друга и не имели возможности как-то взаимодействовать[23]. Таким образом, либо мы имеем дело с самым масштабным совпадением во Вселенной, либо на ранней стадии ее развития произошло некое событие, которое обеспечило это равновесие.
Проблему отклонений сформулировать чуть проще. Она сводится к вопросу о том, откуда взялись крошечные флуктуации плотности в космическом микроволновом фоновом излучении, и чем объясняется их распределение.
Теория космической инфляции решает обе эти проблемы, наряду с несколькими другими. Основная идея состоит в том, что в ранней Вселенной был период времени после сингулярности, но до окончания стадии огненного шара, когда она расширялась невероятно быстро. Эта теория допускает существование периода на ранней стадии развития Вселенной, когда очень маленькая область могла достичь теплового равновесия и увеличиться до размера наблюдаемой нами Вселенной в результате быстрого расширения. Представьте, что будет, если взять сложную абстрактную картину и растянуть ее так, чтобы весь вид закрывало пятно одного цвета. По сути, при расширении Вселенной одна из ее областей, которая изначально была достаточно мала, чтобы успеть достичь теплового равновесия, увеличилась и превратилась в то, что мы называем наблюдаемой Вселенной.
С помощью теории инфляции и квантовой физики также можно объяснить флуктуации плотности. Существенное различие между физикой субатомного мира и физикой макромира состоит в том, что каждому взаимодействию отдельных частиц присуща неустранимая неопределенность. Возможно, вы уже слышали о принципе неопределенности Гейзенберга, который говорит о существовании предела точности любого измерения, обусловленного присущей квантовой механике неопределенностью, так или иначе искажающей результат. Если вы очень точно измерите положение частицы, вы не сможете определить ее скорость, и наоборот. Даже если вы оставите частицу в покое, она все равно будет подвержена случайным блужданиям, и при каждом ее измерении вы будете получать несколько иной результат.
Как это связано с реликтовым излучением? Согласно гипотезе, инфляция была вызвана неким энергетическим полем, подверженным квантовым флуктуациям, или случайным колебаниям. Эти колебания в микроскопическом масштабе представляют собой лишь кратковременные вспышки, но они изменяют плотность в том микромасштабе, в котором происходят, а вследствие расширения превращаются в достаточно существенные неравномерности в распределении плотности первичного газа. Существование небольших пятен в космическом микроволновом фоновом излучении объяснимо, если принять тот факт, что они являются результатом естественной многотысячелетней эволюции флуктуаций, возникших в первые 10-34 секунды существования космоса. Из этих самых пятнышек в итоге сформировались все наблюдаемые сегодня галактики и их скопления.
Тот факт, что распределение самых больших структур во Вселенной может быть точно сопоставлено с колебаниями квантового поля, не перестает меня поражать. Связь космологии с физикой элементарных частиц нигде не проявляется так ярко, как при исследовании космического микроволнового фонового излучения.
Однако мы забегаем вперед. До образования реликтового излучения пройдет еще множество эонов. Мы преодолели лишь 10-34 секунды, и нам еще о многом нужно поговорить.
К моменту окончания стадии инфляции молодая Вселенная стала намного более холодной и пустой по сравнению с моментом своего зарождения. Процесс, называемый «вторичным нагревом», привел к повсеместному повышению температуры, чем вызвал дальнейшее постепенное расширение и охлаждение.
Если до инфляции космос, скорее всего, можно было бы описать Теорией великого объединения, то после ее окончания он начал приближаться к состоянию, отвечающему современным законам физики. Впрочем, до этого еще далеко. На данной стадии сильное ядерное взаимодействие уже покинуло вечеринку ТВО, а электромагнетизм и слабое ядерное взаимодействие по-прежнему оставались объединенными в некое «электрослабое» взаимодействие. Однако в первичном бульоне[24] уже начали формироваться частицы, а именно, кварки и глюоны.
В наши дни кварки чаще всего встречаются в виде компонентов протонов и нейтронов (которые вместе называются адронами). Глюоны представляют собой своеобразный «клей», который связывает кварки посредством сильного ядерного взаимодействия. Глюоны настолько хорошо справляются со своей задачей, что, несмотря на распространенность систем, включающих два, три, а иногда четыре и пять кварков, обнаружить отдельный кварк до сих пор никому не удавалось. Оказывается, если у вас есть два кварка, связанных вместе в экзотической частице, называемой мезоном, вам придется потратить на их разделение столько энергии, что, прежде чем вы сможете добиться своего, энергия, которую вы затратили, спонтанно породит еще два кварка. Поздравляю! Теперь у вас два мезона.
Однако в ранней Вселенной действовали иные правила. Мало того, что силы природы подчинялись другим законам, саму Вселенную заполняла другая смесь частиц, а температуры были настолько высокими, что кварки не могли существовать в стабильном связанном состоянии. Кварки и глюоны свободно отскакивали друг от друга в кипящей смеси, называемой кварк-глюонной плазмой, которая представляет собой своего рода ядерный аналог пламени.
Эпоха кварков продолжалась до тех пор, пока Вселенная не достигла зрелого возраста в одну микросекунду. Незадолго до этого (вероятно, около отметки в 0,1 наносекунды) электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие. Примерно в это же время произошло нечто, позволившее отделить материю от антиматерии (ее злобного близнеца), в результате чего большая часть содержащейся во Вселенной антиматерии аннигилировала[25]. Как и почему такое произошло, до сих пор остается загадкой, однако нам следует этому радоваться, поскольку в противном случае мы рисковали бы столкнуться с античастицами и исчезнуть во вспышке гамма-лучей.
Об эпохе кварков и о кварк-глюонной плазме мы знаем гораздо больше, чем об эпохе Великого объединения. Соответствующая теория довольно хорошо разработана и не так сильно отклоняется от стандартной физики элементарных частиц, как ТВО, а эксперименты подтверждают прогнозы, основанные на теории электрослабых взаимодействий. Однако настоящий прорыв состоит в том, что мы способны воссоздать кварк-глюонную плазму в лаборатории. Такие ускорители частиц, как Релятивистский коллайдер тяжелых ионов (RHIC, The Relativistic Heavy Ion Collider) и Большой адронный коллайдер (БАК, или LHC, Large Hadron Collider), сталкивая между собой ядра золота или свинца на чрезвычайно высоких скоростях, способны создавать крошечные огненные шары, настолько горячие и плотные, что они сдавливают все частицы и на мгновение заполняют коллайдер кварк-глюонной плазмой. Наблюдая, как после столкновений обломки «замерзают», превращаясь в обычные адроны, ученые могут изучить свойства этой экзотической материи, а также действие законов физики в таких экстремальных условиях.
Если исследование реликтового излучения позволяет нам увидеть Большой взрыв, то ускорители частиц дают нам попробовать на вкус первичный бульон[26].