Центральная задача настоящей монографии заключается в следующем. Пусть на некоем множестве задано не более чем счётное семейство алгебр подмножеств, и для каждой алгебры существуют подмножества, ей не принадлежащие. При каких условиях существует подмножество, не принадлежащее всем алгебрам?
Мы занимаемся также вариациями этой задачи. Если семейство алгебр конечное, мы приходим к комбинаторным задачам о конечных множествах. Если же семейство алгебр счётное, мы приходим к трудным задачам теории множеств (в монографии приведено доказательство глубокой теоремы Гитика – Шелаха) и к комбинаторике ультрафильтров.
Книга предназначена для специалистов в области математики.