О праначалах эволюции мы ничего не знаем наверняка. Зато нам точно известна динамика возникновения нового вида, от его появления до блестящей кульминации и затем заката. Путей эволюции было почти столько же, сколько и видов, но всем этим путям присущи некоторые общие черты. Новый вид появляется незаметно. Его внешний облик заимствован у уже существующих видов, и это заимствование, казалось бы, свидетельствует о творческом бессилии Конструктора. Вначале лишь очень немногое говорит о том, что переворот во внутренней организации, который определит расцвет вида в дальнейшем, по существу, уже совершился. Первые представители нового вида обычно малы, они обладают также рядом примитивных черт, словно их рождению покровительствовали торопливость и неуверенность. Некоторое время они прозябают «полутайно», с трудом выдерживают конкуренцию видов, которые существуют давно и которые оптимально приспособлены к требованиям, выдвигаемым миром. Но вот наконец в связи с изменением общего равновесия, которое вызвано внешне ничтожными сдвигами в окружающей среде (а средой для вида служит не только геологический мир, но и совокупность всех остальных видов, живущих в нем), начинается экспансия нового вида. Вторгаясь в уже занятые местообитания, новый вид убедительно доказывает свое превосходство над конкурентами в борьбе за существование. Когда же он входит в пустую, никем не занятую область, происходит взрыв адаптивной радиации, дающий начало сразу целому вееру разновидностей; у них исчезновение остатков примитивизма сопровождается изобилием новых системных решений, все более смело подчиняющих себе внешнюю форму и новые функции организмов. Этим путем вид идет к вершине развития, становится тем, что дает название целой эпохе. Период его господства на суше, в море или воздухе тянется долго. Наконец вновь возникают колебания гомеостатического равновесия. Они еще не означают проигрыша. Эволюционная динамика вида приобретает новые, ранее не наблюдавшиеся черты. В главном стволе представители вида становятся огромными, словно в гигантизме они ищут спасения от нависшей угрозы. И тут же возобновляется адаптивная радиация, на сей раз часто отмеченная признаками сверхспециализации.
Боковые ветви пытаются проникнуть в области, где конкуренция сравнительно слаба. Этот последний маневр нередко оказывается успешным, и когда уже исчезает всякое воспоминание о гигантах, созданием которых главная ветвь вида пыталась защититься от гибели, когда терпят провал и предпринятые одновременно противоположные попытки (ибо некоторые эволюционные потоки в это же время ведут к измельчанию организмов) – потомки этой боковой ветви, счастливо найдя в глубинах периферийной области конкуренции благоприятные условия, упорно сохраняются в ней почти без изменений, являя собой последнее свидетельство давно минувшей мощи и обильности своего вида.
Прошу простить мне этот несколько напыщенный стиль, эту риторику, не подкрепленную примерами. Обобщенность возникла потому, что я говорил о двух эволюциях сразу: о биологической и технологической.
Действительно, главные закономерности и той и другой изобилуют поразительными совпадениями. Не только первые пресмыкающиеся походили на рыб, а первые млекопитающие – на мелких ящеров[15]; ведь и первый самолет, первый автомобиль или первый радиоприемник своей внешней формой были обязаны копированию форм их предшественников. Первые птицы были оперенными летающими ящерицами, а первые автомобили явно напоминали бричку с гильотинированным дышлом, самолет был «содран» с бумажного змея (или прямо с птицы…), радио – с возникшего ранее телефона. Точно так же размеры прототипов были, как правило, невелики, а конструкция поражала примитивностью. Первая птица, пращур лошади и предок слона были небольшими; первые паровозы не превышали размерами обычную телегу, а первый электровоз был и того меньше. Новый принцип биологического или технического конструирования вначале может вызывать скорее сострадание, чем энтузиазм. Механические праэкипажи двигались медленнее конных, первые самолеты едва отрывались от земли, а первые радиопередачи доставляли меньше удовольствия, чем жестяной голос граммофона. Точно так же первые наземные животные уже не были хорошими пловцами, но еще не могли служить образцом быстроногого пешехода. Оперившаяся ящерица – археоптерикс – скорее взлетала, чем летала. Лишь по мере совершенствования происходили вышеупомянутые «радиации». Подобно тому как птицы завоевали небо, а травоядные млекопитающие – равнины, так экипаж с двигателем внутреннего сгорания завладел дорогами, положив начало все более и более специализированным разновидностям. В «борьбе за существование» автомобиль не только вытеснил дилижанс, но и «породил» автобус, грузовик, бульдозер, мотопомпу, танк, вездеход, автоцистерну и многое другое. Самолет, овладевая «экологической нишей» воздушного пространства, развивался, пожалуй, еще стремительнее, неоднократно изменяя уже установившиеся формы и виды тяги (поршневой двигатель сменился турбовинтовым, турбинным, наконец, реактивным, обычные самолеты с крыльями обнаруживают на малых расстояниях грозного противника в виде вертолетов и т. д.). Стоит отметить, что подобно тому, как стратегия хищника влияет на его жертву, «классический» самолет защищается от вторжения вертолета: создается такой тип крылатых машин, которые, изменяя направление тяги, могут взлетать и садиться вертикально[16]. Это та самая борьба за максимальную универсальность функций, которая хорошо знакома каждому эволюционисту.
Оба рассмотренных транспортных средства еще не достигли высшей фазы развития, поэтому нельзя говорить об их поздних формах. Иначе обстоит дело с управляемым воздушным шаром, который перед лицом угрозы со стороны машин тяжелее воздуха обнаружил «гигантизм», столь типичный для предсмертного расцвета вымирающих эволюционных ветвей. Последние цеппелины тридцатых годов нашего века можно смело сопоставить с атлантозаврами и бронтозаврами мелового периода[17]. Огромных размеров достигли также последние типы паровозов – накануне их вытеснения дизельной и электрической тягой. В поиске нисходящих линий развития, которые пытаются вторичными радиациями выйти из угрожаемого положения, можно обратиться к кино и радио. Конкуренция телевидения вызвала бурную «радиацию» радиоприемников и проникновение их в новые «экологические ниши». Возникли миниатюрные карманные приемники, приемники, тронутые сверхспециализацией, вроде «high fidelity»[18] со стереофоническим звуком, со встроенной аппаратурой для высококачественной записи звука и т. д. Что касается кино, то, борясь с телевидением, оно значительно увеличило свой экран и даже стремится «окружить» им зрителя (видеорама, циркорама). Добавим, что вполне можно представить себе такое будущее развитие механических экипажей, которое сделает устаревшим колесо. Когда современный автомобиль будет окончательно вытеснен каким-нибудь видом экипажа на «воздушной подушке», вполне возможно, что последним влачащим существование в «побочной» линии потомком «классического» автомобиля будет, скажем, миниатюрная косилка для стрижки газонов с двигателем внутреннего сгорания. Ее конструкция будет отдаленно напоминать об эпохе автомобилизма, подобно тому как некоторые виды ящериц на архипелагах Индийского океана являются последними живыми потомками гигантских мезозойских ящеров.
Морфологические аналогии между динамикой биоэволюции и динамикой техноэволюции можно представить на чертеже в виде кривых, медленно взбирающихся вверх, с тем чтобы с вершины кульминации рухнуть вниз, к уничтожению[19]; однако морфологическое сходство не исчерпывает всех аналогий между этими двумя великими областями. Можно найти и другие, еще более удивительные совпадения. Так, например, у живых организмов есть целый ряд весьма специфических особенностей, возникновение и сохранение которых невозможно объяснить их адаптационной ценностью. Кроме хорошо известного петушиного гребня, можно указать на великолепное оперение самцов у некоторых птиц (например, у павлина, фазана) и даже на похожие на парус позвоночные гребни ископаемых пресмыкающихся[20]. Аналогично большинство творений определенной технологии обладает чертами, на первый взгляд ненужными, афункциональными, чертами, которые не могут быть оправданы ни условиями их применения, ни назначением. Здесь наблюдается весьма интересное и в некотором смысле забавное сходство между вторжением в биологическое, с одной стороны, и в технологическое – с другой, конструирование в первом случае критериев полового отбора, во втором – требований моды. Для выразительности ограничим рассмотрение этого вопроса примером современного автомобиля. Мы видим, что основные его черты продиктованы проектировщику текущим состоянием технологии: так, например, сохраняя привод на задние колеса и переднее размещение двигателя, конструктор вынужден разместить туннель карданного вала в пассажирском салоне. Но между этим диктатом нерушимой «функциональной» конструкции и требованиями и вкусами потребителя простирается свободное «пространство изобретательности», ибо ведь можно предложить потребителю различные форму и цвет машины, наклон и размеры окон, дополнительные украшения, хромоникелевую отделку и т. д.
Изменчивость продукта технологии, вызванная давлением моды, имеет своим аналогом в биоэволюции необычайное разнообразие вторичных половых признаков. Первоначально эти признаки были следствиями случайных изменений – мутаций, они закрепились в последующих поколениях, потому что их обладатели в роли половых партнеров имели определенные привилегии. Таким образом, аналогами автомобильных «хвостов», хромоникелевых украшений, фантастического оформления решеток радиатора, передних и задних фар являются брачная окраска самцов и самок, их оперение, специальные наросты на теле и – last but not least[21] – такое распределение жировой ткани, которое вместе с определенными чертами лица порождает половое влечение.
Разумеется, инертность «сексуальной моды» в биоэволюции несравненно сильнее, чем в технологии, ибо конструктор Природа не может менять своих моделей каждый год. Однако сущность явления, то есть особое влияние «непрактичного», «несущественного», «ателеологичного» фактора на форму и индивидуальное развитие живых существ и продуктов технологии, можно обнаружить и проверить на огромном числе примеров.
Можно отыскать иные, менее заметные проявления сходства между двумя великими эволюционными древами. Так, в биоэволюции известно явление мимикрии, то есть уподобления особей одного вида особям другого, если это оказывается выгодным для «имитаторов». Неядовитые насекомые могут поразительно напоминать совсем не родственные им, но опасные виды, иногда они «изображают» лишь отдельную часть тела какого-либо существа, совсем уж ничего общего не имеющего с насекомыми, – я имею в виду жуткие «кошачьи глаза» на крыльях некоторых бабочек. Нечто аналогичное мимикрии можно обнаружить и в техноэволюции. Львиная доля слесарных и кузнечных изделий в XIX веке выполнялась под знаком «имитации» растительных форм (мостовые конструкции, перила, фонари, ограды, даже «короны» на трубах первых локомотивов «подражали» растительным мотивам). Предметы обихода, такие как авторучки, зажигалки, светильники, пишущие машинки, часто обнаруживают в наше время тенденцию к «обтекаемости», имитируя формы, разработанные в авиастроении, в технике больших скоростей. Конечно, «мимикрия» такого рода лишена тех глубоких корней, какие имеет ее биологический аналог; в техноэволюции мы встречаем скорее влияние ведущих отраслей технологии на второстепенные; кроме того, многое объясняется тут просто модой. Впрочем, чаше всего невозможно определить, в какой мере данная форма продиктована стремлениями конструктора, а в какой – спросом потребителя.
Мы встречаемся здесь с циклическими процессами, в которых причины становятся следствиями, а следствия – причинами, процессами, где действуют многочисленные обратные связи, положительные и отрицательные, живые организмы в биологии или последовательно создаваемые промышленностью продукты технической цивилизации являются всего лишь элементарными компонентами этих общих процессов.
Вместе с тем такое утверждение проясняет генезис сходства обеих эволюций. И та и другая являются материальными процессами с почти одинаковым числом степеней свободы и близкими динамическими закономерностями. Процессы эти происходят в самоорганизующихся системах, которыми являются и вся биосфера Земли и совокупность технологических действий человека, а таким системам как целому свойственны явления «прогресса», то есть возрастания эффективности гомеостаза, стремящегося к ультрастабильному равновесию[22] как к своей непосредственной цели.
Обращение к биологическим примерам будет полезным и плодотворным также и в дальнейших наших рассуждениях.
Но кроме сходства обе эволюции отмечены также далекоидущими различиями, изучение которых позволяет обнаружить как ограниченность и несовершенство Природы – этого мнимо идеального Конструктора, – так и неожиданные возможности (и в то же время – опасности), которыми чревато лавинообразное развитие технологии в руках человека. Я сказал «в руках человека», ибо технология (пока что, по крайней мере) не безлюдна, она составляет законченное целое, только «дополненная человечеством», и именно здесь таится существеннейшая, может быть, разница, ибо биоэволюция является, вне всякого сомнения, процессом внеморальным, чего нельзя сказать об эволюции технологической.
Первое различие между обеими рассматриваемыми нами эволюциями относится к их генезису и касается вопроса о вызывающих их силах. «Виновником» биологической эволюции является Природа, технологической – человек. Понимание «старта» биоэволюции вызывает и по сей день наибольшие трудности. Проблема возникновения жизни занимает видное место в наших рассуждениях, ибо ее решение означало бы нечто большее, чем просто установление причины некоего исторического факта из далекого прошлого Земли. Нам интересен не сам этот факт, а его следствия – следствия, как нельзя более важные для дальнейшего развития технологии. Развитие это привело к тому, что дальнейший путь стал невозможен без точных знаний о явлениях чрезвычайно сложных – столь же сложных, как и сама жизнь. И дело опять-таки не в том, чтобы научиться «имитировать» живую клетку. Мы не подражаем механике полета птиц и все же летаем. Не подражать мы стремимся, а понять. Но именно попытка «конструкторского» понимания биогенеза встречается с огромными трудностями.
Традиционная биология в качестве компетентного судьи призывает здесь термодинамику. Та говорит, что типичное развитие идет от явлений большей к явлениям меньшей сложности. Но возникновение жизни было обратным процессом. Если даже принять в качестве общего закона гипотезу о существовании «порога минимальной сложности», преодолев который материальная система способна не только сохранять, вопреки внешним помехам, имеющуюся организацию, но и передавать ее в неизменном виде организмам-потомкам, то и это не объяснит биогенеза. Ведь когда-то какой-то организм должен был сначала перешагнуть этот порог[23]. И что важно: произошло это по воле так называемого случая или же в силу причинности? Иными словами, был ли «старт» жизни явлением исключительным (как главный выигрыш в лотерее) или типичным (каким в ней является проигрыш)?
Биологи, взяв слово по вопросу о самозарождении жизни, говорят, что оно должно было представлять собой пошаговый процесс, слагаться из ряда этапов, причем осуществление каждого очередного этапа на пути к появлению праклетки обладало определенной вероятностью. Возникновение аминокислот в первичном океане под действием электрических разрядов было, например, вполне вероятным, образование из них пептидов – немного менее, но также в достаточной мере осуществимым; зато спонтанный синтез ферментов, этих катализаторов жизни, кормчих ее биохимических реакций, составляет – с этой точки зрения – явление сверхнеобычное (хотя и необходимое для возникновения жизни). Там, где правит вероятность, мы имеем дело со статистическими законами. Термодинамика демонстрирует именно такой тип законов. С ее точки зрения вода в кастрюле, поставленной на огонь, закипит, но не наверняка. Возможно, что вода на огне замерзнет, хотя эта возможность астрономически мала. Однако аргумент, что явления, термодинамически самые невероятные, в конце концов все же происходят, если только запастись достаточным терпением, а развитие жизни располагало достаточным «терпением», поскольку длилось миллиарды лет, – такой аргумент звучит убедительно лишь до тех пор, пока мы не положим его на рабочий стол математика. В самом деле, термодинамика может еще «проглотить» случайное возникновение белков в растворе аминокислот, но самозарождение ферментов уже не проходит. Если бы вся Земля представляла собой океан белкового бульона, если бы она имела радиус в пять раз больший, чем на самом деле, то и тогда массы бульона было бы еще недостаточно для случайного возникновения таких узкоспециализированных ферментов, какие необходимы для «запуска» жизни. Число возможных ферментов больше числа звезд во всей Вселенной. Если бы белкам в первичном океане пришлось дожидаться спонтанного возникновения ферментов, это могло бы с успехом длиться целую вечность. Таким образом, чтобы объяснить реализацию определенного этапа биогенеза, необходимо прибегнуть к постулату сверхневероятного явления – а именно к «главному выигрышу» в космической лотерее[24].
Скажем откровенно, будь мы все, в том числе и ученые, разумными роботами, а не существами из плоти и крови, ученых, склонных принять такой вероятностный вариант гипотезы о возникновении жизни, удалось бы пересчитать по пальцам одной руки. То, что их больше, обусловлено не столько всеобщим убеждением в ее справедливости, сколько простым фактом, что мы существуем и, стало быть, сами являемся косвенным аргументом в пользу биогенеза. Ибо двух или даже четырех миллиардов лет достаточно для возникновения видов и их эволюции, но недостаточно для создания живой клетки путем повторных «извлечений» вслепую из статистического мешка всех мыслимых возможностей.
Биогенез при таком подходе не только оказывается невероятным с точки зрения научной методологии (которая занимается явлениями типичными, а не лотерейными, имеющими привкус чего-то не поддающегося расчету), но и приводит к вполне однозначному приговору, который обрекает на неудачу всякие попытки применить «инженерию жизни» или даже «инженерию очень сложных систем», поскольку в их возникновении господствует чрезвычайно редкий случай.
Но, к счастью, подобный подход неверен. Он возникает потому, что мы знаем только два рода систем: очень простые, типа машин, строившихся нами до сих пор, и безмерно сложные, какими являются все живые существа. Отсутствие каких бы то ни было промежуточных звеньев привело к тому, что мы слишком судорожно цеплялись за термодинамическое толкование явлений – толкование, которое не учитывает пошагового появления системных законов в образованиях, стремящихся к состоянию равновесия[25]. Если это состояние равновесия лежит в очень узких пределах (как это, например, имеет место в случае часов) и если оно равносильно остановке их маятника, то у нас попросту нет материала для экстраполяции на системы со многими динамическими возможностями, такие, скажем, как планета, на которой начинается биогенез, или лаборатория, в которой ученые конструируют самоорганизующиеся образования.
Такие образования, сегодня еще сравнительно простые, и представляют собственно эти искомые промежуточные звенья. Их возникновение, например, в виде живых организмов вовсе не является «главным выигрышем в лотерее случая» – оно есть проявление неизбежных состояний динамического равновесия в рамках системы, изобилующей разнородными элементами и тенденциями. Поэтому процессы самоорганизации – не исключительные, а типичные явления; и возникновение жизни служит попросту одним из проявлений заурядного в Космосе процесса гомеостатической организации. Это ничем не нарушает термодинамического баланса Вселенной, так как баланс этот – глобальный; он допускает множество таких явлений, как, например, возникновение тяжелых (то есть более сложных) элементов из легких (то есть более простых).
Таким образом, гипотезы типа «Монте-Карло» – аналог космической рулетки – суть методологически наивное продолжение суждений, основанных на знакомстве с элементарно простыми механизмами. Им на смену приходит тезис о «космическом панэволюционизме»; из существ, обреченных на пассивное ожидание сверхъестественной удачи, этот тезис превращает нас в конструкторов, способных делать выбор из ошеломляющего запаса возможностей в рамках весьма общей пока еще директивы строить самоорганизующиеся образования все более высокой сложности[26].
Особняком стоит вопрос, какова частота появления в Космосе этих постулированных нами «парабиологических эволюций» и увенчиваются ли они возникновением психики в нашем, земном понимании. Но это – тема для особых размышлений, требующих привлечения обширного фактического материала из области астрофизических наблюдений.
Великий конструктор Природа в течение миллиардов лет проводит свои эксперименты, извлекая из раз и навсегда данного материала (что, кстати, тоже еще вопрос) все, что возможно. Человек, сын матери Природы и отца Случая, подсмотрев эту неутомимую деятельность, ставит свой извечный вопрос о смысле этой космической, смертельно серьезной, самой последней игры. Вопрос наверняка безответный, если человеку суждено навсегда остаться вопрошающим. Иное дело, когда человек будет сам давать ответы на этот вопрос, вырывая у Природы ее сложные секреты, и по собственному образу и подобию начнет развивать Эволюцию Технологическую.
Второе различие между рассматриваемыми нами эволюциями является методическим и касается вопроса: каким образом? Биологическая эволюция делится на две фазы. Первая охватывает промежуток от «старта» с уровня неживой материи до появления отчетливо отделенных от среды живых клеток; в то время как общие законы и многочисленные конкретные процессы эволюции во второй фазе – в фазе возникновения видов – мы знаем достаточно хорошо, о ее первой, начальной фазе мы не можем сказать ничего определенного. Этот период долгое время недооценивали как по его временной протяженности, так и с точки зрения происходивших в нем явлений. Сегодня мы считаем, что он охватывал по меньшей мере половину всей длительности эволюции, то есть около двух миллиардов лет, – и все же некоторые специалисты жалуются на его краткость[27]. Дело в том, что именно тогда была сконструирована клетка – элементарный кирпичик биологического строительного материала, – по своей принципиальной схеме одинаковая и у трилобитов миллиард лет назад, и у нынешних ромашки, гидры, крокодила или человека. Самым поразительным – и фактически непонятным – является универсальность этого строительного материала. Каждая клетка – будь то клетка туфельки, мышцы млекопитающего, листа растения, слизистой железы червя, брюшного узла насекомого и т. п. – содержит одни и те же основные части: ядро с его отшлифованным до предела молекулярных возможностей аппаратом наследственной информации, энзиматическую сеть митохондрий, аппарат Гольджи и др., и в каждой из клеток заключена потенциальная возможность динамического гомеостаза, специализированной дифференциации и тем самым всего иерархического строения многоклеточных организмов.
Один из фундаментальных законов биоэволюции состоит в непосредственности ее действий. Ибо в эволюции каждое изменение служит только сегодняшним задачам приспособления. Эволюция не может производить таких изменений, которые служили бы лишь подготовкой для других, предстоящих через миллионы лет; о том, что будет через миллионы лет, биоэволюция «ничего не знает», поскольку она является «слепым» конструктором, действующим методом «проб и ошибок»[28]. Она не может, в отличие от инженера, «остановить» неисправную машину жизни, чтобы, «продумав» ее основную конструктивную схему, в один прием радикально ее перестроить.
Поэтому тем более удивительна та «исходная дальновидность», которую она проявила, создав в прологе к многоактной драме видов строительный материал, обладающий ни с чем не сравнимой универсальностью и пластичностью. Поскольку, как уже было сказано, она не может производить внезапных, радикальных перестроек, все механизмы наследственности, ее сверхустойчивость и вторгающаяся в нее стихия случайных мутаций (без которых не было бы изменений, а значит, и развития), разделение полов, способность к размножению и даже те свойства живой ткани, которые с наибольшей выразительностью проявляются в центральной нервной системе, – все это было уже как бы «заложено» в археозойской клетке миллиарды лет назад. И подобную дальновидность продемонстрировал Конструктор безличный, не мыслящий, заботящийся на первый взгляд только о сиюминутном состоянии дел, о выживании данного преходящего поколения праорганизмов – каких-то микроскопических белково-слизистых капелек, которые умели лишь одно: сохранять себя в зыбком равновесии физико-химических процессов и передавать своим потомкам динамический стереотип этой сохранности!
О прадрамах этой древнейшей, подготовительной по отношению к настоящей эволюции видов, фазы мы не знаем ничего: от нее не осталось никаких – воистину никаких! – следов. Вполне возможно, что в эти миллионы лет поочередно возникали и гибли формы пражизни, совершенно отличные как от современных, так и от древнейших ископаемых. Быть может, многократно возникали большие, почти живые конгломераты, развивались некоторое время (измеряемое опять-таки миллионами лет) и лишь на последующих этапах борьбы за существование создания эти безжалостно вытеснялись из своих экологических ниш более приспособленными, то есть более универсальными. Это означало бы теоретически возможное, и даже правдоподобное, начальное многообразие и разветвленность путей, на которые вступала самоорганизующаяся материя, с ее непрерывным истреблением, заменяющим разум, который планирует конечную универсальность. И количество конструкций, которые подверглись уничтожению, заведомо в тысячи раз превосходит горстку тех, которые победоносно вышли из всех испытаний.
Конструкторский метод технологической эволюции совершенно иной. Образно говоря, Природа должна была заложить в биологический строительный материал все потенциальные возможности, реализованные значительно позже, тогда как человек, приступив к одной технологии, отбрасывал ее, чтобы перейти к другой, новой. Будучи относительно свободным в выборе строительного материала, имея в своем распоряжении высокие и низкие температуры, металлы и минералы, газы, твердые тела и жидкости, человек мог, казалось бы, совершить больше, чем Эволюция, обреченная всегда иметь дело с тем, что ей дано: с тепловатыми водными растворами, с клейкими, состоящими из многих частиц соединениями, со сравнительно скудным набором первичных образований, которые содержались в архейских морях и океанах. Но Эволюция сумела «выжать» из столь ограниченного исходного материала буквально все, что было возможно. В результате «технология» живой материи по сей день побивает нашу, человеческую, инженерную технологию, поддерживаемую всеми ресурсами коллективно добытого теоретического знания.
Говоря иначе, универсальность наших технологий минимальна. До сих пор техническая эволюция двигалась в направлении, как бы обратном биологической, создавая исключительно устройства узкой специализации. Прообразом для большинства орудий была человеческая рука, причем всякий раз – лишь одно ее движение или жест: клещи, сверло, молоток имитируют соответственно сжимающиеся пальцы, вытянутый палец, вращаемый вокруг своей оси благодаря движениям в запястном и локтевом суставах, и, наконец, кулак. Так называемые универсальные станки тоже ведь по существу являются узкоспециализированными устройствами. Даже фабрики-автоматы, появляющиеся только сейчас, лишены пластичности, характерной для поведения простых живых организмов. Достижение универсальности лежит, по-видимому, на пути дальнейшего развития теории самоорганизующихся систем, способных к адаптивному самопрограммированию, функциональное сходство таких систем с человеком не является, конечно, случайным.
Вершина этого пути вовсе не состоит (как думают некоторые) в «повторении» конструкции человека или других живых организмов с помощью электрической «механики» цифровых машин. Пока что «технология» жизни опережает нас на большую дистанцию, мы должны догнать ее не для того, чтобы слепо подражать достижениям жизни, а для того, чтобы пойти дальше Природы, совершенство которой только кажется недостижимым.
Особая глава эволюционной методологии рассматривает отношение теории к практике, абстрактного знания к осуществленным технологиям. В биоэволюции это отношение, естественно, отсутствует, поскольку, ясное дело, природа «не ведает, что творит»: она просто реализует то, что возможно, то, что само собой вытекает из данных материальных условий. Человеку нелегко согласиться с таким положением дел хотя бы потому, что он сам принадлежит к числу этих «нечаянных», «непредусмотренных» отпрысков матери Природы.
Фактически это даже не глава, а целая огромная библиотека. Попытки кратко пересказать ее содержание кажутся безнадежными. На грани экспликативной бездны мы должны стать особенно лаконичными. Первобытные технологи не располагали никакой теорией, в частности лишь потому, что вообще не подозревали о возможности чего-то подобного. На протяжении тысячелетий теоретическое знание развивалось без участия эксперимента, формируясь на основе магического мышления, которое является своеобразной формой мышления индуктивного, только используемого ложным образом. Предшественником индукции у животных был условный рефлекс, то есть реакция, идущая по схеме «если А, то В». Разумеется, и такому рефлексу, и магии должно предшествовать наблюдение. Зачастую случалось, что правильные технологические приемы противоречили ложным теоретическим сведениям своего времени, тогда выстраивали цепочку псевдообъяснений, целью которых было согласовать теорию с практикой (тот факт, что насосы не поднимали воду выше чем на 10 метров, «объясняли» тем, что Природа боится пустоты)[29]. Наука в ее современном понимании исследует законы Природы, а технология использует их для удовлетворения потребностей человека, в своей основе таких же, как и во времена египетских фараонов. Одеть, накормить, дать крышу над головой, переместить из одного места в другое, охранить нас от болезней – вот задача технологии. Наука интересуется фактами об атомах, молекулах, звездах, а не нами, во всяком случае, мы интересуем науку не настолько, чтобы ее компасом служила непосредственная полезность результатов. Следует отметить, что в древности бескорыстие теоретических изысканий было более явным, чем сейчас. Опыт научил нас, что нет бесполезной науки в самом прагматичном значении слова «польза», потому что никогда не известно заранее, какая информация о природе пригодится, более того, окажется необыкновенно нужной и важной. Одна из самых «ненужных» отраслей ботаники – лихенология[30], занимающаяся плесневыми грибами, – оказалась в буквальном смысле слова жизненно необходимой после открытия пенициллина. В прежние времена исследователи – идиографы[31], неутомимые собиратели фактов, классификаторы и эмпирики, не смели и рассчитывать на подобный успех. Но ведь человек, это создание, непрактичность которого временами может сравниться лишь с его любопытством, заинтересовался количеством звезд и строением Космоса раньше, чем теорией земледелия или строением собственного тела. Кропотливый, поистине маниакальный труд собирателей и коллекционеров наблюдений постепенно воздвиг огромное здание номотетических наук[32], обобщающих факты в виде законов, относящихся к системам предметов и явлений. До тех пор пока теория плетется в хвосте технологической практики, конструкторская деятельность человека во многом напоминает используемый эволюцией метод «проб и ошибок». Подобно тому как эволюция «испытывает» приспособительные силы животных и растительных «прототипов» – мутантов, инженер исследует реальные возможности новых изобретений, летательных аппаратов, транспортных средств, машин, часто прибегая к созданию редуцированных моделей. Этот метод эмпирического отсева ложных решений и возобновления конструкторских усилий патронировал создание изобретений XIX века: лампочки с угольной нитью, фонографа, динамо-машины Эдисона, а еще раньше – локомотива и парохода.