Нейронные сети могут использоваться для решения различных задач, таких как распознавание изображений и речи, обработка естественного языка, обнаружение аномалий и многих других задач, где важно уловить сложные закономерности и взаимосвязи в данных. Их способность к автоматическому обучению и адаптации позволяет решать задачи, которые трудно или невозможно решить с помощью традиционных подходов. Нейронные сети способны произвести революцию во многих отраслях, в том числе и в юридической сфере.
Изображение 1: Архитектура нейронной сети [2].
Несмотря на это, эксперты юридического сообщества единодушно считают, что профессия юриста наиболее архаично организована и наименее восприимчива к достижениям современных технологий. Тем не менее, искусственный интеллект (ИИ) уже давно и эффективно используется в юридической профессии. Например, нейронные сети используются для прогнозирования исхода дел, оценки договорных рисков и даже принятия судебных решений. В Китае судьи обязаны обращаться за консультациями к искусственному интеллекту, причем ИИ ежедневно рассматривает более 100 тыс. дел и предоставляет суду нормы права для вынесения решений, а прокуратура этой восточной страны использует "умный" суд для предъявления обвинений [3]. Университетский колледж Лондона (UCL) совместно с университетами Шеффилда и Пенсильвании смогли создать комплекс искусственного интеллекта. ИИ научили различать "нарушение" и "отсутствие нарушения" в делах, которые рассматривал Европейский суд по правам человека. Искусственный интеллект правильно предсказал исход 584 дел. Показатель точности составил 79% [4].
Законопроекты – основа любой законодательной системы, они могут разрабатываться как будущий проект отдельного нового закона или с целью внесения изменений и дополнений в уже существующий закон. Экспертиза законопроектов – трудоемкий, длительный и важный процесс, в котором часто участвуют люди-эксперты. Способность эффективно обобщать законопроекты крайне важна для политиков, юристов и граждан. Традиционные методы экспертизы законопроектов опираются на человеческую экспертизу, которая может занимать много времени, быть субъективной и предвзятой. Использование нейронных сетей для автоматизированного анализа законопроектов, на мой взгляд, может произвести революцию в этой области, обеспечив такие существенные преимущества, как скорость, точность, масштабируемость и экономическая эффективность. Нейронные сети могут быть обучены генерировать краткие резюме, извлекая важную информацию из текста. Такие методы, как рекуррентные нейронные сети и сети долговременной кратковременной памяти, показали многообещающие результаты в задачах реферирования документов. Юридические исследования требуют обширного анализа литературы и изучения конкретных примеров, что позволяет обучать нейронные сети обрабатывать огромные объемы юридических текстов, извлекать из них значимую информацию и более эффективно выявлять юридические прецеденты. Уже сейчас частная компания Luminance разработала систему, использующую уникальную комбинацию контролируемого и неконтролируемого машинного обучения для поиска ключевой информации в тысячах документов [5].