bannerbannerbanner
Расширенный фенотип: длинная рука гена

Ричард Докинз
Расширенный фенотип: длинная рука гена

Полная версия

Имеющиеся в наличии мутации

Каким бы мощным ни был предполагаемый отбор, эволюции не будет, если нет генетической изменчивости, с которой он мог бы работать. “Таким образом, хотя я мог бы доказать, что обладание крыльями в дополнение к рукам и ногам дало бы преимущества некоторым позвоночным, однако ни у кого из них не появилось третьей пары конечностей – по всей видимости, в связи с тем, что отсутствовала подходящая наследственная изменчивость” (Lewontin, 1979b). Эта мысль может встретить разумные возражения. Возможно, что единственная причина, по которой у свиней нет крыльев, состоит в том, что отбор никогда не благоприятствовал их развитию. Мы, конечно же, должны с осторожностью делать предположения, основанные на антропоцентристском здравом смысле, что, очевидно, любому животному было бы сподручно иметь пару крыльев, даже если бы оно пользовалось ими нечасто, и что, следовательно, отсутствие крыльев в данной систематической группе непременно связано с нехваткой подходящих мутаций. Если самок муравьев выкармливают, чтобы они стали царицами, то у них вырастают крылья, но у рабочих особей эта способность не проявляется. Более того, у многих видов царицы пользуются своими крыльями лишь однажды – для брачного полета, а после решительно откусывают или обламывают их у основания, готовясь провести остаток своей жизни под землей. Несомненно, крылья приносят не только выгоды, но и издержки.

Одним из наиболее впечатляющих проявлений утонченности мышления Чарльза Дарвина может служить его обсуждение бескрылости и затрат, связанных с наличием крыльев, у насекомых океанических островов. Для наших целей здесь важен тот момент, что насекомых с крыльями может унести ветром в открытый океан; Дарвин (Darwin, 1859, p.177) предположил, что именно поэтому у многих островных насекомых крылья редуцированы. Но он также отметил, что некоторые островные насекомые отнюдь не бескрылы – их крылья необычно большие:

Это вполне согласуется с действием естественного отбора. По скольку когда новый вид насекомого впервые оказывается на острове, направление естественного отбора – увеличивать или редуцировать крылья – будет зависеть от того, каким способом спасется большее число особей: успешно борясь с ветрами или отказываясь от борьбы и летая реже или вообще не летая. Подобно морякам, потер певшим крушение недалеко от берега: хорошим пловцам выгодно быть способными плыть как можно дальше, а плохим лучше бы вообще не уметь плавать и держаться за остатки судна.

Трудно найти более изящный образец рассуждений об эволюции, хотя уже почти слышишь дружное тявканье: “Нефальсифицируемо! Тавтологично! Сказки Киплинга[3]!”

Если же возвратиться к вопросу, могли ли свиньи когда-либо отрастить себе крылья, то Левонтин, безусловно, прав в том, что биологи, занимающиеся изучением адаптаций, не могут позволить себе игнорировать проблему наличия подходящей мутационной изменчивости. Несомненно, многие из нас за компанию с Мэйнардом Смитом (хотя и не будучи столь компетентными в генетике, как он или Левонтин) склонны делать допущение, “что соответствующая наследственная изменчивость, скорее всего, найдется” (Maynard Smith, 1978a). Мэйнард Смит основывается на том, что, “за редкими исключениями, искусственный отбор всегда оказывался эффективным вне зависимости от вида организма и от признака, по которому велась селекция”. Известным затруднительным примером – что полностью признает Мэйнард Смит (Maynard Smith, 1978b), – в котором необходимая для предполагаемого оптимума наследственная изменчивость многим кажется недостаточной, является теория Фишера (Fisher, 1930a) о соотношении полов. У селекционеров крупного рогатого скота не возникло проблем с повышением удоев, увеличением производства говядины, выведением более крупных животных, более мелких животных, с безрогостью, c устойчивостью к различным заболеваниям и с агрессивностью бойцовых быков. Для молочной промышленности было бы, очевидно, чрезвычайно выгодным выведение пород скота, у которых телки рождались бы чаще бычков. Все попытки добиться этого были исключительно неудачными – видимо, из-за того, что не существовало нужной наследственной изменчивости. В каком заблуждении пребывает моя собственная биологическая интуиция, видно из того, что данный факт меня весьма поражает и даже тревожит. Мне бы хотелось считать его исключением, но Левонтин, конечно, прав, говоря, что надо уделять больше внимания вопросу об ограниченности имеющейся генетической изменчивости. В свете сказанного, огромный интерес могла бы представить подборка материалов о податливости и сопротивляемости организмов в ответ на действие искусственного отбора по разнообразным признакам.

Между тем тут можно сказать несколько очевидных вещей. Во-первых, может быть и имеет смысл привлекать нехватку нужной изменчивости для объяснения отсутствия у животных некоторых приспособлений, которые, как нам кажется, пригодились бы, но применить данное рассуждение в обратном направлении будет труднее. Например, мы в самом деле можем полагать, что свиньям было бы лучше обладать крыльями и что они не крылаты только потому, что у их предков не возникло необходимых мутаций. Но если мы видим у животного сложно устроенный орган или сложную и отнимающую время схему поведения, то имеем серьезные основания предполагать, что это было создано естественным отбором. Такие инстинкты, как уже обсуждавшийся танец пчел, “муравление” у птиц, “раскачивание” у палочников и уборка скорлупы у чаек, определенно являются сложными и отнимающими время и энергию. Рабочая гипотеза о том, что они должны иметь ценность для выживания по Дарвину, подавляюще убедительна. В немногочисленных случаях удалось выяснить, в чем эта ценность для выживания заключается (Tinbergen, 1963).

Вторая очевидная вещь состоит в том, что гипотеза “нехватки мутаций” теряет в убедительности, если близкородственный вид или тот же самый вид, но в других условиях, оказывается способен выработать необходимое изменение. Ниже я буду говорить о том, как уже известные способности роющей осы Ammophila campestris учитывались при объяснении отсутствия таких же способностей у близкородственного вида Sphex ichneumoneus. Данное рассуждение, но в несколько более изысканной форме, применимо и в рамках одного вида. Например, Мэйнард Смит (Maynard Smith, 1977, см. также Daly, 1979) завершил одну из статей ударным вопросом: “Отчего самцы млекопитающих не лактируют?” Нам нет нужды докапываться, почему он считал, что они должны лактировать – он мог быть не прав, его модель могла строиться на неверных предпосылках и, возможно, правильный ответ на его вопрос заключается в том, что самцам млекопитающих это не выгодно. Здесь важно то, что этот вопрос несколько иного рода, нежели “Отчего у свиней нет крыльев?”. Нам известно, что у самцов млекопитающих имеются необходимые для лактации гены, поскольку все гены самок млекопитающих прошли через предков-самцов и могут быть переданы потомкам мужского пола. Действительно, при воздействии гормонами млекопитающие, будучи генетически самцами, могут лактировать, как самки. Все это делает малоубедительным предположение, будто самцы млекопитающих не лактируют просто потому, что им это “не приходило в голову” в мутационном смысле. (Бьюсь об заклад, я мог бы вывести породу самопроизвольно лактирующих самцов, проводя селекцию на повышение чувствительности к постепенно снижаемым дозам вводимого гормона – это было бы любопытное практическое применение эффекта Болдуина – Уоддингтона.)

И, наконец, третья очевидная вещь. Постулированное изменение, представляющее собой простое количественное расширение уже существующей изменчивости, выглядит правдоподобнее радикального качественного изменения. Вряд ли можно ожидать появления мутантной свиньи с зачатками крыльев, но нет ничего невероятного в появлении мутантной свиньи с хвостом, более закрученным, чем у ныне существующих свиней. Эту мысль я подробнее развил в другом месте (Dawkins, 1980).

Как бы то ни было, нам нужен более тонкий подход к вопросу, как различия в уровне мутабильности влияют на эволюцию. Не слишком правильно требовать однозначного ответа, существует или нет наследственная изменчивость, подходящая для того, чтобы дать реакцию на данное давление отбора. Левонтин (Lewontin, 1979) верно замечает: “Не только качественные возможности адаптивной эволюции ограничиваются наличием соответствующих мутаций, но и относительная скорость эволюции различных признаков пропорциональна уровню генетических изменений каждого из них”. Мне кажется, что это в сочетании с обсуждавшимися в предыдущем разделе представлениями об исторически обусловленных ограничениях открывает серьезный путь для размышлений. Данную мысль можно проиллюстрировать воображаемым примером.

Крылья у птиц сделаны из перьев, а у рукокрылых – из кожных перепонок. Почему их крылья устроены по-разному, какой способ “лучше”? Закоренелый адаптационист ответил бы, что птицам больше должны подходить перья, а летучим мышам – кожные перепонки. Крайний антиадаптационист сказал бы, что в действительности, весьма вероятно, перья были бы лучше перепонок и для тех, и для других, но рукокрылым не улыбнулась удача в виде нужных мутаций. Однако есть и промежуточная точка зрения, и она представляется мне убедительнее любой из крайних. Давайте согласимся с адаптационистом в том, что, имея достаточно времени, предки рукокрылых, наверное, смогли бы произвести последовательность мутаций, необходимую для отращивания перьев. Наиболее важная фраза здесь – “имея достаточно времени”. Мы не проводим разграничение между невозможными и возможными мутациями по принципу “все или ничего”, мы просто констатируем неопровержимый факт, что вероятность одних мутаций численно больше, чем других. В таком случае среди предковых млекопитающих могли появиться мутанты как с зачатками перьев, так и с зачатками кожных перепонок. Но появления “предперьевых” мутантов (которые были бы должны вначале пройти через стадию чешуек) пришлось бы ждать так долго по сравнению с “перепончатыми” мутантами, что крылья из кожных перепонок уже давным-давно появились и положили начало эволюции, сделавшей их достаточно эффективными.

 

Основная идея здесь сродни уже высказывавшейся мысли о приспособительных ландшафтах. Там мы столкнулись с тем, как отбор не позволяет филогенетическим линиям вырваться из тисков локальных оптимумов. А здесь мы имеем дело с группой организмов, находящейся на эволюционном распутье: одна дорога ведет, скажем так, к “перьевым” крыльям, а другая – к “перепончатым”. Конструкция с перьями является в настоящий момент, возможно, не только глобальным оптимумом, но и локальным. Другими словами, группа организмов находится у подножия склона, ведущего к увенчанной перьями вершине на ландшафте Сьюэлла Райта. И если бы только необходимые мутации оказались в наличии, филогенетической линии не составило бы труда по этому склону взобраться. В конце концов, согласно выдуманной нами притче, такие мутации произошли бы, однако – и это важный момент – они опоздали. Мутации, способствовавшие появлению кожных перепонок, появились раньше, и организмы уже слишком высоко вскарабкались по склонам “перепончатого” приспособительного холма, чтобы поворачивать обратно. Подобно тому как река течет вниз по пути наименьшего сопротивления, проделывая таким образом извилистый маршрут, далекий от кратчайшего пути к морю, так и направление филогенетических линий будет проходить в соответствии с действием отбора на основе изменчивости, имеющейся в наличии в каждый конкретный момент. Эволюция, начавшись в заданном направлении, тем самым отменяет имевшиеся ранее возможности, запечатывая доступ к глобальному оптимуму. Моя мысль такова, что для того, чтобы стать серьезным ограничением совершенства, нехватке подходящих мутаций не обязательно быть абсолютной. Ей достаточно быть количественной помехой, чтобы иметь масштабные последствия качественного характера. То есть я принципиально согласен с Гульдом и Коллоуэем, когда они, цитируя побуждающую к размышлениям статью Вермиджа (Vermeij, 1973) о математических исследованиях морфологической лабильности, пишут, что “одни типы строения можно повернуть, направить и изменить различным образом, а другие нельзя” (Gould & Calloway, 1980). Но я бы предпочел смягчить это “нельзя”, поставив здесь вместо непреодолимого барьера количественное ограничение.

Мак-Клири (McCleery, 1978) в своем приятно исчерпывающем введении в учение школы Мак-Фарленда об этологической оптимальности упоминает концепцию Г. А. Саймона об “удовлетворительности” как альтернативе оптимальности. В то время как оптимизирующие системы занимаются максимизацией некоего параметра, системы, стремящиеся к удовлетворительности, нацелены на то, чтобы просто сделать его достаточным. Под “достаточным” в данном случае подразумевается достаточный для выживания. Мак-Клири довольствуется жалобой по поводу того, что для подтверждения подобных теорий “достаточности” было сделано немного экспериментальных работ. Я же думаю, что теория эволюции дает нам право на несколько большее несогласие a priori. Отбор оставляет живые существа не просто за их способность оставаться в живых – живые существа выживают в соревновании с другими живыми существами. Затруднение концепции “удовлетворительности” состоит в том, что она совершенно упускает из виду элемент конкуренции, фундаментальный для всего живого. Говоря словами Гора Видала: “Недостаточно победить. Другие должны проиграть”.

“Оптимизация”, с другой стороны, тоже неудачное слово, поскольку оно предполагает достижение того, что инженер определил бы как конструкцию, наилучшую во всех отношениях. Оно словно бы не замечает пределов совершенства, являющихся предметом данной главы. Во многих случаях слово “мелиоризация” выражает золотую середину между оптимизацией и стремлением к удовлетворительности. Там, где optimus означает “лучший”, melior означает “лучше”. Все, к чему мы пришли, рассуждая об исторически обусловленных ограничениях, о райтовских приспособительных ландшафтах, о реках, текущих по линии сиюминутного наименьшего сопротивления, – все это связано с тем фактом, что естественный отбор выбирает из всех имеющихся в доступности вариантов тот, который лучше. Природа не способна к предвиденью, чтобы выстроить последовательность мутаций, которые, хотя и повлекут за собой временные невыгоды, направят организмы на путь к достижению максимально возможного превосходства. Она не может удержаться и не благоприятствовать мутациям, дающим небольшие преимущества в настоящий момент, с тем чтобы получить значительные преимущества от более удачных мутаций, которые, возможно, произойдут позже. Подобно реке, естественный отбор слепо совершает “мелиоризацию” своего маршрута, двигаясь по пути имеющегося в наличии в настоящий момент наименьшего сопротивления. Животное, получающееся в итоге, не обладает наисовершеннейшим строением, какое только можно вообразить, но и не является способным лишь сводить концы с концами. Оно является результатом исторической последовательности изменений, каждое из которых представляло собой, в лучшем случае, тот вариант из имевшихся в то время под рукой, который был лучше.

Ограничения в расходах и материалах

“Если бы не было никаких ограничений в возможностях, то наилучший фенотип обладал бы бессмертием, неуязвимостью для хищников, откладывал бы яйца в бесконечных количествах и т. д.” (Maynard Smith, 1978b). “Если предоставить инженеру полную свободу действий, то он мог бы сконструировать “идеальное” крыло для птицы, но ему было бы необходимо знать, в каких рамках он должен работать. Обязан ли он ограничиваться перьями и костями, или может разрабатывать скелет из титанового сплава? Сколько ему позволено потратить на эти крылья, и какая доля имеющегося финансирования отводится, скажем, на производство яйцеклеток?” (Dawkins & Brockmann, 1980). На практике с инженером обычно оговариваются минимальные требования к работе, например: “Мост должен выдержать нагрузку в десять тонн… Крыло самолета не должно сломаться при давлении в три раза большем, чем ожидается в случае наихудших условий турбулентности – а теперь идите и сделайте это как можно дешевле”. Наилучшей конструкцией будет та, которая отвечает оговоренному критерию (“удовлетворяет”) с наименьшими затратами. Любая же конструкция, которая работает “лучше” установленного критерия, будет с большой вероятностью отвергнута, поскольку добиться соответствия критерию, по-видимому, можно и дешевле.

В каждом конкретном случае критерии такого рода устанавливаются произвольно. Нет ничего сверхъестественного в том, что запас прочности троекратно превышает наихудшие ожидаемые условия. В военной авиации возможны конструкции с меньшим уровнем безопасности, чем в гражданской. Указания по оптимизации конструкций равносильны, в сущности, денежному выражению безопасности для жизни, скоростных качеств, комфортабельности, загрязнения атмосферы и т. д. Затраты на каждый из этих пунктов – предмет для размышлений и часто для разногласий.

При конструировании животных и растений в ходе эволюции нет места ни размышлениям, ни разногласиям – разве только между людьми, наблюдающими за представлением. Однако естественный отбор обеспечивает нечто равнозначное подобным размышлениям: риск быть съеденным должен сопоставляться с риском остаться голодным и с выгодами совокупления еще с одной самкой. Ресурсы, потраченные птицей на рост грудных мышц для усиления крыльев – это ресурсы, которые могли быть потрачены на формирование яиц. Увеличение головного мозга даст более точную настройку поведения в соответствии с окружающей средой, с прошлым и настоящим, но только за счет увеличения головы, что означает дополнительный вес в передней части тела, что в свою очередь делает необходимым для аэродинамической устойчивости более крупный хвост, что в свою очередь… Крылатые тли менее плодовиты по сравнению с бескрылыми особями того же вида (J. S. Kennedy, личное сообщение). Любое эволюционное приспособление требует затрат, которые можно измерять в упущенных возможностях сделать что-то другое, и это так же бесспорно, как и жемчужина старой экономической мудрости: “Бесплатных обедов не бывает”.

Несомненно, математические выкладки по оценке биологических расходов, по выражению стоимости мускулатуры крыла, продолжительности пения, продолжительности охоты у хищников и т. п. в некой общей валюте, такой как, скажем, “эквивалент гонады”, будут очень сложны. Инженер имеет возможность упростить свои расчеты благодаря произвольно установленным минимальным требуемым характеристикам, но биолог лишен подобной роскоши. И мы должны испытывать сочувствие и восхищение по отношению к биологам, не побоявшимся вступить в схватку с этими задачами во всей их сложности (например, Oster & Wilson, 1978; McFarland & Houston, 1981).

С другой стороны, пусть математика будет чудовищной – она нам не нужна для того, чтобы сделать один чрезвычайно важный вывод, а именно, что любой взгляд на биологическую оптимизацию, не считающийся с существованием расходов и уступок, обречен на провал. Адаптационист, который рассматривает какой-то аспект строения или поведения животного, допустим аэродинамические характеристики крыла, и забывает при этом, что эффективность крыльев непременно куплена ценой издержек, отразившихся на других отраслях экономики организма, заслуживает всей той критики, какую он получит. Надо отметить, что слишком многие из нас, никогда на самом деле не отрицавшие необходимости оценивать затраты, при обсуждении биологических функций не упоминают, а возможно, и не думают об этом. Возможно, в том числе и здесь кроется причина критики в наш адрес. В одном из предыдущих разделов я процитировал высказывание Питтендрая о том, что адаптивная организация – это “мешанина из временных приспособлений”. Мы не должны забывать и о том, что это клубок компромиссов (Tinbergen, 1965).

В принципе, кажется, полезной эвристической методикой было бы делать допущение, что организм оптимизирует что-либо, имея набор заданных ограничений, и пытаться разобраться, в чем эти ограничения состоят. Этакая усеченная версия подхода, который Мак-Фарленд и его коллеги называют “обратной оптимальностью” (например, McCleery, 1978). Возьму в качестве иллюстрации работу, с которой в силу обстоятельств я коротко знаком.

Докинз и Брокман (Dawkins & Brockmann, 1980) обнаружили у изучавшихся Брокман роющих ос (Sphex ichneumoneus) образ действий, который может быть расценен простодушным экономистом как невыгодный. Особи данного вида, казалось, совершают “ошибку Конкорда” и оценивают ресурс по тому, сколько на него потрачено, а не по выгоде, которую можно извлечь из него в дальнейшем. Изложу коротко факты. Одиночные самки запасают в норках ужаленных и парализованных зеленых кузнечиков, предназначая их в пищу своим личинкам (см. главу 7). В случае если две самки выясняют, что запасали добычу в одной норке, дело обычно кончается дракой за нее. Каждая драка продолжается до тех пор, пока одна из ос, которую теперь можно называть проигравшей, не удалится с места происшествия, оставив в распоряжении победительницы норку и всех кузнечиков, добытых обеими осами. Мы измеряли “действительную стоимость” норки количеством содержавшихся в ней кузнечиков. “Предшествовавшие инвестиции” каждой осы в данную норку выражались числом кузнечиков, которых она сама туда положила. Наблюдения говорили в пользу того, что каждая оса тратила на драку время, пропорциональное скорее ее собственному вкладу, нежели “фактической ценности” норки.

Такое поведение очень понятно с точки зрения человеческой психологии. Мы тоже имеем обыкновение упорно бороться за ту собственность, которую приобрели с большим трудом. Само название этой ошибки берет начало из того факта, что в то время, когда здравые экономические рассуждения говорили за прекращение разработок авиалайнера “Конкорд”, один из аргументов в пользу завершения наполовину законченного проекта был обращен в прошлое: “Мы уже столько на него потратили, что теперь не можем давать задний ход”. Распространенный довод для продолжения войн дал этой ошибке и другое название, а именно, ошибка “Наши мальчики не могли погибнуть напрасно”.

Когда мы с доктором Брокман впервые осознали, что роющие осы ведут себя подобным образом, я, надо признаться, пришел в легкое замешательство – возможно, из-за собственного предыдущего вклада (Dawkins & Carlisle, 1976; Dawkins, 1976a) в усилия убедить своих коллег в том, что “ошибка Конкорда” в действительности всего лишь ошибка! Но затем мы начали более серьезно задумываться об ограничениях в расходах. Может быть, то, что кажется нам неприспособительным, лучше рассматривать как оптимум при некоторых заданных ограничениях? Затем этот вопрос стал выглядеть так: “Существует ли ограничение, при котором “конкордовское” поведение ос – это лучшее, чего они могут достигнуть?”

 

На деле этот вопрос был еще сложнее, поскольку было необходимо заменить концепцию простой оптимальности концепцией Мэйнарда Смита (Maynard Smith, 1974) об эволюционно стабильных стратегиях (ЭСС – см. главу 7), но принципиальная ценность эвристического подхода с позиций обратной оптимальности должна была оставаться неизменной. Если мы сможем показать, что поведение животного – это то, что произвела бы оптимизирующая система, работающая при ограничении X, то, возможно, такой подход поможет нам что-то узнать и об ограничениях, при которых животные в реальности функционируют.

В настоящем примере, по всей вероятности, имело место ограничение в сенсорных способностях. Если осы почему-либо неспособны сосчитать кузнечиков в норке, но могут при этом оценить свои собственные охотничьи достижения, то получается, что соперницы владеют асимметричной информацией. Каждая “знает”, что в норке содержится, самое меньшее, b кузнечиков, где b – это количество, добытое ей самой. Возможно, она и способна “прикинуть”, что их реальное число в норке больше, чем b, но она не знает, насколько больше. Графен (Grafen, готовится к публикации) показал, что при таких условиях ожидаемая ЭСС будет примерно та же самая, какую Бишоп и Кэннингс (Bishop & Cannings, 1978) изначально рассчитали для так называемой “обобщенной войны на уничтожение”. Математические подробности можно оставить в стороне; для настоящих целей важно то, что поведение, предсказываемое общей моделью войны на уничтожение, очень напоминает “конкордовское” поведение, проявляемое осами на самом деле.

Если бы мы занимались проверкой общего предположения, что животные занимаются оптимизацией, то такого рода объяснение post hoc выглядело бы сомнительным. Модифицируя post hoc элементы гипотезы, приходится подыскивать вариант, соответствующий фактам. Тут будет очень уместен ответ Мэйнарда Смита (Maynard Smith, 1978b) на подобную критику: “…тестируя модель, мы проверяем не общее положение о том, что в природе происходит оптимизация, а частные гипотезы, касающиеся ограничений, наследственности и критериев оптимизации”. Мы в данном случае исходим из общей посылки, что природа оптимизирует в рамках ограничений, и тестируем отдельные модели, выясняя, какие ограничения могли бы тут быть.

Конкретное предположенное ограничение – неспособность сенсорной системы ос оценивать содержимое норки – согласуется с независимыми фактами о той же самой осиной популяции (Brockmann, Grafen & Dawkins, 1979; Brockmann & Dawkins, 1979). Нет причин считать это ограничение непреодолимым на все времена. Наверное, осы могли бы выработать способность оценивать содержимое гнезда, но только заплатив за нее. Давно известно, что роющие осы близкородственного вида Ammophila campestris ежедневно оценивают содержимое каждого из своих гнезд (Baerends, 1941). Если Sphex запасает провизию в одной норке за раз, откладывает яйцо и, засыпав норку землей, предоставляет личинке питаться самостоятельно, то Ammophila campestris постоянно пополняет запасы параллельно в нескольких норках. Самка одновременно заботится о двух или трех растущих личинках – каждая в отдельной норке. Ее личинки разных возрастов, и их потребности в пище также различны. Каждое утро самка оценивает оставшееся содержимое каждой норки во время специального “утреннего обхода”. Экспериментально изменяя содержимое норок, Бэрендс показал, что самка целый день производит снабжение каждой норки в соответствии с тем, что там было во время ее утренней инспекции. Содержимое норки в остальное время суток не влияет на поведение осы, даже если она сама заполняла эту норку весь день. Таким образом, создается впечатление, что своей способностью к оцениванию она пользуется бережливо, отключая ее после утренней инспекции на весь остаток дня, почти как если бы это был дорогостоящий энергоемкий прибор. Пусть эта аналогия и причудлива, но из нее ясно следует предположение, что способность к оцениванию, что бы она собой ни представляла, может вызывать превышение текущих расходов, даже если они заключаются всего лишь в потраченном времени (Дж. П.Бэрендс, личное сообщение).

По-видимому, оса Sphex ichneumoneus, заботящаяся в каждый момент времени только об одной норке, меньше нуждается в способности оценивать норки по сравнению с Ammophila campestris. Не пытаясь посчитать добычу в норке, она оберегает себя не только от текущих расходов, которые Ammophila распределяет с такой аккуратностью; также она экономит и на начальных издержках по производству необходимого нервного и сенсорного аппарата. Возможно, способность оценивать содержимое норки и дала бы небольшие преимущества, но только в тех сравнительно редких случаях, когда приходится драться за норку с другой осой. Легко предположить, что расходы перевешивают выгоды и что, следовательно, отбор никогда не благоприятствовал эволюции механизма оценивания. Мне это предположение кажется более интересным и конструктивным, нежели альтернативная гипотеза о том, что никогда не возникало необходимой мутационной изменчивости. Конечно, мы должны признать, что последняя гипотеза может быть верна, но я бы предпочел оставить ее на крайний случай.

3Американский эволюционист Стивен Гульд, а вслед за ним и другие авторы, называли «сказками Киплинга» (“Just So Stories”) нефальсифицируемые эволюционные гипотезы. (Прим. науч. ред.)
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34 
Рейтинг@Mail.ru