А. В РАЗВИТИИ ТЕОРИЙ (НАПРИМЕР, ФИЗИЧЕСКИХ) СУЩЕСТВУЕТ ОПРЕДЕЛЕННАЯ ПРЕЕМСТВЕННОСТЬ, СОСЕДСТВУЮЩАЯ С РЕВОЛЮЦИОННЫМИ ИЗМЕНЕНИЯМИ ПАРАДИГМ.
Б. В ХОДЕ РАЗВИТИЯ НАУКИ КАКИЕ-ТО ТЕОРИИ РАЗВИВАЮТСЯ, ИНОГДА ПРЕОБРАЖАЯСЬ ПОЧТИ ДО НЕУЗНАВАЕМОСТИ, А КАКИЕ-ТО «ВЫМИРАЮТ». ЕСЛИ ТЕОРИЯ НЕ «ВЫМИРАЕТ», ТО ЧАСТО СТАРЫЕ ФОРМЫ ОСТАЮТСЯ В ХОДУ ДЛЯ ОПИСАНИЯ НЕЭКСТРЕМАЛЬНЫХ ЯВЛЕНИЙ.
В. ЭВОЛЮЦИЯ НАУКИ ДАЛЕКА ОТ ОКОНЧАНИЯ. ВО МНОГОМ ОНА ТОЛЬКО УСКОРЯЕТСЯ. ЕСТЬ ЕЩЕ МНОГО ЯВЛЕНИЙ, К КОТОРЫМ НАМ НАДО «ПРИСПОСОБИТЬ» НАШИ ТЕОРИИ.
Г. ФИЗИКА, ХИМИЯ И МАТЕМАТИКА НА ДРУГИХ ПЛАНЕТАХ ДОЛЖНЫ БЫТЬ ПОХОЖИ НА НАШИ.
Поразительным фактом является наличие связей между всеми существующими биологическими видами. У нас у всех есть единый общий предок – LUCA[19]. Разнообразие существующего животного мира объясняется эволюцией, которая не имеет долговременной цели. На каждом отдельном этапе «решается» конкретная задача. В результате возникает множество видов, занимающих всевозможные биологические ниши и связанных друг с другом. Иногда эволюция была относительно плавной, а иногда происходили революционные изменения, в том числе связанные с внешними катастрофами. При этом важно, что наряду с высокоразвитыми сложными организмами продолжают существовать и простейшие формы жизни, мало изменившиеся за сотни миллионов лет, поскольку и для них есть свои ниши, условия в которых менялись незначительно.
В развитии науки можно увидеть множество аналогий с биологической эволюцией. Разные теории создавались в разное время, когда экспериментальные данные находились на разном уровне. Целью в первую очередь было (и остается) объяснение конкретных, наблюдаемых сейчас фактов. Именно так происходило совершенствование и развитие. При этом новые модели в той или иной степени строились на основе уже имеющихся. Хотя иногда случались и научные революции, значительно менявшие текущую парадигму. Так же, как в мире живых существ, мы видим, что более продвинутые теории, имеющие более широкую область применимости и учитывающие тонкие эффекты, часто не вытесняют полностью простые, но эффективные старые подходы. Так, мы продолжаем активно пользоваться простой ньютоновской физикой там, где эффекты теории относительности малы, т. е. ими можно пренебречь.
Рассмотрим, например, небесно-механические задачи. С некоторой долей уверенности можно утверждать, что именно с описания видимого движения Солнца, Луны и планет начинаются современные естественные науки.
Первые модели движения небесных тел были основаны на идеализированном качественном рассуждении о том, как должен быть устроен мир. Оказалось, что это не очень хорошая идея – задаваться жесткими парадигмами, вытекающими из общефилософских и/или идеологических источников. В частности, из-за такого подхода на эволюционном древе мы видим и тупиковые ветви. Геоцентрическая система мира – одна из них.
В оправдание древних надо сказать, что с чего-то надо было начинать, и это сейчас, имея за плечами сотни лет развития науки, нам легко их критиковать. Не исключено, что в чем-то мы и сами пока блуждаем в потемках. Но главное, что ранние схемы, описывающие поведение небесных тел, были кинематическими. Ничего не было известно о природе и характере тех сил, которые определяют их движение.
Тем не менее даже при таком подходе, детально анализируя большой комплекс подробных и точных наблюдательных данных[20], да еще с использованием самой передовой на тот момент математики, Иоганн Кеплер смог показать, что планеты движутся по эллиптическим орбитам, а центральное тело находится не в центре, а в одном из фокусов эллипса. Итогом этого анализа явились три закона Кеплера.
Вывод этой троицы на основе понимания физических основ движения планет стал возможен только с появлением ньютоновского закона всемирного тяготения. Стало ясно, что движением планет управляет гравитация. Уточнился и третий закон Кеплера. Теперь в него добавилась масса центрального тела и его спутника. Однако Кеплер не случайно смог описать данные наблюдений Тихо Браге без этих дополнительных членов уравнения. В Солнечной системе масса Солнца во много раз превосходит массу любой планеты и даже сумму их масс. Поэтому для оценок мы иногда продолжаем использовать третий закон Кеплера в оригинальной формулировке: квадраты периодов обращения относятся друг к другу, как кубы больших полуосей орбит[21].
После появления теории Ньютона стало возможным решать разнообразные задачи о движении небесных тел, поскольку теперь можно было записать уравнения для действующих между ними сил и решать их, получая на выходе скорости и координаты, меняющиеся со временем. Разумеется, из-за взаимного влияния орбиты теперь не являются идеальными эллипсами[22]. А если комбинация масс и расстояний такова, что на интересующий нас объект сравнимые влияния оказывают хотя бы два тела (например, Солнце и Юпитер, если речь о какой-нибудь комете или астероиде), то траектория может стать очень сложной.
Анализ таких движений существенно способствовал эволюции физики и математики. Для решения актуальных задач разрабатывались новые методы, открывались новые закономерности. Это было стадией постепенной эволюции, но впереди ученый мир ждало очередное потрясение, сравнимое с созданием ньютоновской механики. Речь, конечно же, о появлении специальной (СТО) и общей (ОТО) теорий относительности.
В начале XX века с интервалом чуть более 10 лет появились две теории, созданные одним автором. Обе радикально изменили физику, а кроме того, дали сильнейшую мотивацию для развития сразу нескольких разделов математики.
Первая теория касалась кинематики при движении с большой скоростью. Что значит большой? Сравнимой со скоростью света. Если нас не интересует точность выше 1 %, то мы можем пользоваться обычными формулами вплоть до скоростей порядка 10 % от световой. Но чем ближе мы подбираемся к пределу, тем заметнее новые эффекты: замедление времени, изменение длины и др.
Специальная теория относительности быстро была принята физиками. За короткий срок удалось проверить ее предсказания, прекрасно совпавшие с данными измерений. Несмотря на всю свою парадоксальность (относительность одновременности, парадокс близнецов и т. д.), физическая теория верна. Давайте потратим немного времени на то, чтобы проговорить, что мы подразумеваем под словами «физическая теория верна».
Если верна СТО, значит ли это, что старая кинематика неверна? Не значит. Формулы Галилея прекрасно работают при низких скоростях. Конечно, с одной стороны, повышая точность измерений, мы при любой (не нулевой) скорости можем обнаружить отклонения, но тем не менее прекрасно решим задачу «из пункта Ц в пункт Ы вышел пешеход», пользуясь обычными формулами сложения скоростей. С другой стороны, если сейчас нам не удается увидеть отклонений от СТО, то означает ли это, что мы никогда их не увидим? Не означает: может, да, а может, и нет. Для физической теории (в отличие от математической теоремы) важна область применимости. Если в математике всегда можно четко очертить условия, относящиеся к теореме, то в физике это удается сделать только постфактум, когда обнаружено, что есть случаи, когда теория перестает работать. Тогда ее надо менять на более общую, в которой, в свою очередь, старая рассматривается как предельный случай[23] (например, при стремлении скорости к нулю в случае СТО и преобразований Галилея).
Общая теория относительности делает еще один шаг. По сути, это теория гравитации. Она существенно сложнее СТО, отчасти потому, что базируется на более сложных математических структурах. К ключевым свойствам ОТО можно отнести геометрическое описание гравитации и принцип эквивалентности, гласящий, что гравитационная и инертная масса равны друг другу. Он иллюстрируется известным эйнштейновским мысленным экспериментом с лифтом. Находясь в замкнутой коробке, невозможно определить, движется ли она с постоянным ускорением или покоится в однородном гравитационном поле.
Выводы СТО и ОТО радикально противоречат многому из того, что люди считают здравым смыслом, поскольку в процессе своей эволюции они не сталкивались с движением с околосветовыми скоростями или сильными гравитационными полями, заметно искажающими движение света. Вероятно, это и к лучшему. Но в результате кажущаяся парадоксальность ряда выводов СТО и ОТО (а также многих других теорий) мешает многим как следует осознать суть этих построений, т. е. понять, как устроен мир. Для многих формулы в этом смысле решают проблему: если мы способны что-то подсчитать, то можно считать, что понимаем, как это работает. Вопрос об «истинном понимании» непростой, и мы к нему еще вернемся, а пока продолжим разговор об эволюции на примере последовательности физических теорий.
Итак, ОТО – сложная теория. В ней трудно разобраться, и ее непросто применять в расчетах. Но это не беда, если вам не нужна высокая точность или вы не рассматриваете сильные гравитационные поля. Даже в сильных полях можно придумывать какие-то аппроксимации, облегчающие жизнь (например, знаменитый потенциал Пачинского – Вииты[24]). Конечно, рассчитывая движение межпланетных станций в Солнечной системе и анализируя телеметрию с них, приходится учитывать эффекты ОТО. Тем не менее огромное количество небесно-механических задач можно рассматривать, игнорируя дополнительные усложнения, связанные с тонкостями общей теории относительности. Расчеты поведения колец Сатурна или анализ непростой динамики систем спутников планет-гигантов часто проводят в рамках ньютоновской механики. В этих случаях эффекты СТО и ОТО достаточно малы, чтобы ими можно было пренебречь.
Точно так же дело обстоит с учетом квантовых эффектов. Они малы не только в обычной жизни, но и вообще в макроскопическом мире[25]. Расчеты гравитационно-волновых сигналов при слияниях черных дыр требуют детального учета эффектов ОТО, но квантовыми эффектами можно пренебрегать. Зато они станут важны, если вы анализируете данные с детектора – антенн LIGO или VIRGO. Там работают лазеры, и важны так называемый квантовый шум и многие другие эффекты микромира. Мы описываем расширение вселенной в рамках ОТО без квантовых эффектов, но, чтобы понять, как сформировались изначальные флуктуации плотности, из которых затем возникли первые звезды, галактики и их скопления, а в конечном счете и мы с вами, необходимы квантовые процессы на стадии инфляции и выхода из нее. Какие-то ситуации мы вообще не можем точно рассчитать (например, финальные стадии испарения черных дыр), потому что наши теории еще недостаточно проэволюционировали, чтобы быть к этому готовыми. Они пока не включают совместное описание гравитации и квантового мира.
Если мы говорим о зарождении жизни и ее эволюции, то интереснейшим вопросом является такой: возможны ли принципиально иные формы жизни? Земная биология основана на углероде и воде в качестве универсального растворителя. Возможна ли иная биохимия? Пока люди не знают ответа. Лишь на нашей планете мы видим примеры существования живых существ. Теоретические исследования и лабораторные эксперименты не позволяют дать надежный ответ о возможности альтернативной биохимии, а тем более о самозарождении жизни на ее основе и о распространенности таких форм[26]. Вероятно, эта проблема будет решена не в ходе теоретического моделирования или лабораторных исследований, а в результате прямых поисков вне Земли. Не исключено, что уже через 20–30 лет ученые столкнутся с другими формами живых существ, даже, кто знает, в Солнечной системе, где-нибудь на спутниках больших планет. В ближайшие два-три десятилетия планируется осуществить соответствующие изыскания с помощью автоматических межпланетных станций на Европе – спутнике Юпитера, и Энцеладе – спутнике Сатурна.
Однако есть основания полагать, что жизнь, основанная на углероде и воде, наиболее часто должна встречаться и на других планетах. Это связано и с распространенностью воды по сравнению с альтернативными вариантами жидкостей, которые могли бы выступить в роли растворителей, и с особенностями углерода с точки зрения образования химических связей[27]. Молекула воды состоит из водорода, первого по распространенности элемента во вселенной, и кислорода – он стоит на третьем месте (при этом занимающий второе место гелий является инертным газом и молекулы практически не образует). Поэтому вода, что подтверждается и наблюдениями, – более распространенное вещество в сравнении с другими возможными растворителями, такими как аммиак, метанол и метан. Хотя идея замены углерода на кремний в качестве «элемента жизни» и популярна у фантастов, при научном анализе проблемы ученые сталкиваются с трудностями. Кроме того, что кремний – существенно более редкий элемент, его преимущества перед углеродом начинают проявляться при столь экзотических условиях (например, высоких температурах и/или высоком давлении), что они сами по себе могут стать препятствием на пути развития живых организмов.
Сейчас достоверно известно о нескольких тысячах экзопланет – планет, вращающихся вокруг других звезд[28]. Активно обсуждаются поиски биомаркеров – веществ, свидетельствующих о наличии биосферы. В ближайшие годы это станет возможным благодаря работе новых космических инфракрасных телескопов, а также гигантских наземных оптических инструментов. Анализ спектральных свойств атмосфер экзопланет позволит выявить присутствие биосфер. Но, вероятнее всего, это будет жизнь, качественно похожая на земную, т. е. основанная на углероде и воде.
Возвращаясь к нашей аналогии, можно сказать, что и наука в других мирах должна быть похожа на существующую у нас. Физики, химики, математики с разных планет должны найти общий язык, поскольку они описывают одну Вселенную, а эффективно это можно делать, видимо, одним способом. По крайней мере, на нашем уровне развития.
А. КАЖУЩИЕСЯ ИНОГДА ЧУДЕСНЫМИ ВОЗМОЖНОСТИ СОВРЕМЕННОЙ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ ВО МНОГОМ ОБЪЯСНЯЮТСЯ ДЛИТЕЛЬНЫМ РАЗВИТИЕМ ЭТИХ НАУК, МНОЖЕСТВОМ ПОПЫТОК ПРИДУМАТЬ ТЕ ИЛИ ИНЫЕ МЕТОДЫ И КОНСТРУКЦИИ, ИЗ КОТОРЫХ ЛИШЬ НЕМНОГИЕ ВОШЛИ В СОВРЕМЕННЫЙ АРСЕНАЛ НАУКИ, ВЫДЕРЖАВ ВСЕ ПРОВЕРКИ.
Б. РАЗВИТИЕ МАТЕМАТИКИ НАЧАЛОСЬ С ПРАКТИЧЕСКИХ И ДОСТАТОЧНО ПРОСТЫХ ПО СОВРЕМЕННЫМ МЕРКАМ ЗАДАЧ.
В. В ХОДЕ ЭВОЛЮЦИИ НАУКИ МНОГИЕ ФИЗИЧЕСКИЕ ТЕОРИИ ОКАЗАЛИСЬ ТУПИКОВЫМИ И В ИТОГЕ СТАЛИ ДОСТОЯНИЕМ «ХРАНИЛИЩ НАУЧНЫХ ОКАМЕНЕЛОСТЕЙ».
Мы уже упоминали о «непостижимой эффективности математики». Некоторые ситуации выглядят абсолютно чудесными[29]. В XIX веке математики для своих надобностей (я бы не побоялся сказать: «Во время своей игры в бисер») придумали тензоры. А потом Марсель Гроссман, который как раз и был математиком, вовремя рассказал о них Эйнштейну. В результате получилась общая теория относительности. Разве это не чудо, что к тому моменту, когда Эйнштейн (а также, например, Давид Гильберт) размышлял о природе гравитации, у математиков был готов весь необходимый инструментарий? Иначе говоря, не просто были придуманы «какие-то тензоры», а разработаны методы работы с ними, доказаны соответствующие теоремы, под все подведен надежный базис. В 1912 г., когда произошел важный обмен идеями между Гроссманом[30] и Эйнштейном, тензоры уже стали неотъемлемой частью большой математики и вся надежность и достоверность этой науки были в распоряжении исследователей гравитации (о которой математики наверняка обычно не задумываются, принимая ее как должное и/или неизбежное).
Кажущаяся «магия» математики во многом связана с тем, что чаще всего люди видят лишь конечный результат. В самых разных областях и ситуациях, если мы не знаем о длительном процессе развития, об огромных усилиях, о пробах и ошибках, о множестве отброшенных вариантов, то удивленно восклицаем: «Как это у них получается!» Например, одежда из ткани, которая не горит, не протыкается ножом, но при этом легкая, удобная и теплая, поразила бы древнего человека. С его точки зрения, это практически чудо, но на самом деле– результат долгого, постепенного развития технологии. Это можно было бы ему продемонстрировать, начав с того, как делается нить из шерсти или хлопка, затем объяснить, как из этого ткется ткань, потом показать процесс создания искусственных нитей и т. д. и т. п.
Нелишне заметить, что подобные рассуждения верны не только для развития технологии и науки, но и для высокоорганизованных социально- политических структур. Устойчивые демократические общества пришли к такому состоянию в результате продолжительного и зачастую весьма болезненного развития, через периоды напряженной работы общества в целом, перемежаемые революциями и другими потрясениями.
Длительное и хотя бы относительно устойчивое развитие может приводить к удивительным по сложности результатам, если оценивать их исходя из начального состояния. «Чудеса» современной математики в этом смысле подобны «чуду глаза», чему мы посвятим отдельный разговор. Неоднократно сложность зрительного аппарата представляли в качестве аргумента против эволюции: «Как мог сразу возникнуть такой сложный орган?» Но глаз не возник одномоментно. Он – продукт длительной естественной эволюции без конечной цели, начавшейся с очень простых «устройств». В эволюционном процессе при каждом шаге обычно происходят не такие уж большие усовершенствования, призванные решить локальные проблемы.
Похожим образом развиваются и математика, и области ее применения в науке. Стартовав с простых (по современным меркам) и понятных задач, нередко носивших сугубо практический характер, математика за два тысячелетия достигла уровня, на котором лишь единицы узких специалистов могут реально разобраться в тех или иных самых современных результатах в своей области. Древние греки, начавшие писать первые уравнения, не думали о развитии математического аппарата для теории струн. При этом в биологической эволюции бывают и большие скачки, сопровождаемые массовым вымиранием одних видов и появлением или бурным развитием других. Такие события происходят и в развитии науки, в частности математики и физики.
Примеров «вымерших» теорий и моделей очень много. В физике это и уже упоминавшаяся выше геоцентрическая система мира, и теплород, и теория эфира. В математике можно вспомнить задачу о квадратуре круга, неразрешимость которой была доказана только в конце XIX века, и другие подобные проблемы, над решением которых бились веками (иногда получая попутно важные результаты). В борьбе конкурирующих моделей в естественных науках выживает более приспособленная – та, что лучше описывает реальный мир. В сегодняшней науке мы видим противостояние различных подходов к созданию квантовой гравитации, разных моделей ранней вселенной. Идут споры о необходимости гипотезы слабовзаимодействующих элементарных частиц, не входящих в так называемую Стандартную модель (т. е. гипотезы о темном веществе), для объяснения большого комплекса астрофизических данных. Продолжаются дискуссии о природе черных дыр – о процессах вблизи горизонта и под ним. Почти все из обсуждающихся моделей окажутся ошибочными, а потому со временем будут забыты. То же самое верно и для менее глобальных вопросов. Вообще, можно сказать, что активная научная деятельность существует, только если есть соперничество различных подходов к описанию или объяснению каких-то явлений. В этом смысле наука всегда находится в стадии становления. Она существует в относительно тонком переходном слое, отделяющем познанное от непознанного: впереди – темный лес, позади – учебники.
Длительный эволюционный процесс нашего понимания мира подарил нам ряд удивительных открытий. Среди кажущихся парадоксальными выводов в духе «Неужели такое может быть?!» можно выделить корпускулярно-волновой дуализм. Чтобы прийти к заключению, что у элементарных частиц проявляются волновые свойства, а некоторые волны в ряде процессов ведут себя как поток частиц, пришлось проделать долгий путь.
«Из точки А в точку Б вышел… вышла… вышло…» Что может переместиться из одной точки в другую? Во-первых, объект, предмет. Маленький объект – частица, кусочек вещества. Во-вторых, волна. Вот вы в полный штиль ловите рыбу, смотрите на поплавок и бросаете подкормку. Поплавок начинает колебаться, но вы не напрягаетесь, так как понимаете, что это до него дошла волна, в данном случае продольно-поперечная. Бывают чисто поперечные волны, как при колебаниях струны, или продольные, например звуковые. Но это все равно волны.
В XVII веке начали активно изучать волновые процессы и параллельно начался спор о природе света: то ли это поток частиц, то ли волны. Мнения ученых разделились: Ньютон считал, что частицы, а Франческо Гримальди, открывший дифракцию и интерференцию, – что волны.
Дифракция, по сути, сводится к тому, что волна может огибать препятствие, а интерференция – к тому, что волны могут складываться или вычитаться так, что сигнал оказывается усиленным или ослабленным. Это довольно легко наблюдать на волнах, появляющихся на воде. Оказалось, что свет ведет себя похожим образом. В XIX веке сложилось четкое понимание, что свет – это поток поперечных волн, что было закреплено в теории Максвелла. Однако к концу того же века стали накапливаться данные, не вписывающиеся в волновое описание света. Это были, во-первых, фотоэффект, а во-вторых – так называемая ультрафиолетовая катастрофа.
Теорию фотоэффекта построил Эйнштейн и именно за это получил Нобелевскую премию. Парадокс в первую очередь состоял в том, что при освещении некоторых материалов даже незначительным потоком коротковолнового излучения они начинают испускать электроны, а если светить мощным потоком излучения с большой длиной волны, то эффекта нет. Это странно, ведь во втором случае мы передаем образцу гораздо больше энергии. Кроме того, если измерить индивидуальную энергию вылетающих электронов, то оказывается, что она растет не при увеличении мощности потока излучения, а с уменьшением длины волны λ (т. е. с ростом частоты электромагнитных волн ν = с / λ, где c – скорость света).
Загадку удалось разгадать, предположив, что свет представляет собой поток частиц – фотонов. Таким образом, энергия излучения передается электрону при индивидуальном взаимодействии двух частиц. Если свет имеет большую длину волны (т. е. низкую частоту, λν = с), то энергия фотонов ниже (E = hν, здесь h – постоянная Планка). Поэтому, несмотря на большую мощность потока (много фотонов), каждый из них несет маленькую энергию и не может оказать сильного воздействия на электрон: ниже некоторой энергии вообще не может его вырвать, а если вырывает, то не может придать большую энергию этой частице.
Парадокс с фотоэффектом возник раньше, чем была осознана проблема ультрафиолетовой катастрофы, но его удалось разрешить на несколько лет позже. В самом конце XIX века, в 1900 г., Макс Планк смог объяснить, почему формула Рэлея – Джинса, описывающая распределение энергии излучения в спектре так называемого абсолютно черного тела (им может быть, с некоторой точностью, нагретый металлический шар или плотное облако газа), дает «безумный» (катастрофический) результат для коротких (ультрафиолетовых) волн. Гипотеза Планка состояла в том, что свет может испускаться лишь порциями – квантами. Энергия одного кванта пропорциональна частоте, а коэффициент пропорциональности впоследствии назвали постоянной Планка. Отметим, что это одна из трех самых важных констант в современной физике (две другие – это скорость света и гравитационная постоянная).
Теперь возник другой парадокс, с которым нам жить: свет одновременно и волна, и частица. При этом нельзя представлять себе излучение как поток неделимых частиц: можно поглотить порцию электромагнитных волн одной частоты и переизлучить на другой частоте. Разумеется, число квантов до и после переизлучения будет разным, если сохраняется полная энергия квантов. Иначе говоря, электромагнитная волна как таковая не имеет какой-то минимальной порции. Эйнштейн пояснял его так: «Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте».
У электромагнитных волн высокой частоты (гамма- и рентгеновский диапазоны) в большей степени проявляются свойства частиц, а в радиодиапазоне, наоборот, заметнее волновые свойства. Например, в астрономии детекторы излучения в разных диапазонах спектра работают по принципиально разным методикам. В радиодиапазоне, где длина волны велика, приборы регистрируют именно волны (т. е. колебания электромагнитного поля), а детекторы гамма-квантов похожи на детекторы элементарных частиц. Однако в случае и малой, и большой длины волны можно поставить эксперименты, где будут проявляться как корпускулярные, так и волновые свойства[31]. Таким образом, «двойственная» природа света стала надежно подтвержденным фактом.
Думаете, на этом все закончилось? Вовсе нет – ягодки были еще впереди. Если про свет со времен Ньютона и Гримальди спорили, то про электроны (а заодно и другие частицы) – нет. Это же частицы! Оказалось, тоже не совсем. Эксперименты показали, что электроны также демонстрируют дифракцию и интерференцию, равно как и другие элементарные частицы. И даже не совсем элементарные. Современные эксперименты позволяют увидеть волновые свойства даже у довольно крупных молекул[32]. А в 2018 г. волновые свойства удалось непосредственно продемонстрировать и у частиц антивещества[33].
Такие «волны материи» называют волнами де Бройля в честь Луи де Бройля, впервые построившего соответствующую теорию. В общем и целом она заключается в том, что если две частицы имеют одинаковые скорости, то чем больше масса частицы, тем меньше длина соответствующей ей волны. Соответственно, тем сложнее наблюдать волновые свойства таких объектов. Если масса частицы равна так называемой массе Планка (примерно 0,00001 грамма), то соответствующая ей длина волны равна так называемой планковской длине (около 10–33 см)[34].
Интересно представить себе, как мы переносимся в XVII век, усаживаем за один стол Ньютона и Гримальди и объясняем им (видимо, на латыни, придется брать с собой продвинутого гуманитария в качестве переводчика), что оба они правы. Конечно, педант вспомнит, что в год смерти Гримальди (1663) Ньютону было всего 20 лет, но это не остановит наш полет фантазии.
Описание поведения света и частиц существенно усложнилось за сотни лет, разделяющих времена Рене Декарта, впервые объяснившего радугу, и Эрвина Шрёдингера, заложившего основы волновой квантовой механики. Готов поспорить, что прогресс в этой области может заметить даже неспециалист, просто на глазок сравнив публикации XVII и XX веков.
А. ПО МЕРЕ РАЗВИТИЯ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ УРАВНЕНИЯ СТАНОВЯТСЯ СЛОЖНЕЕ: В ФИЗИКЕ ПОЯВЛЯЮТСЯ НОВЫЕ ПРОЦЕССЫ И ЯВЛЕНИЯ (ВКЛЮЧАЯ ГИПОТЕТИЧЕСКИЕ), НУЖДАЮЩИЕСЯ В ОПИСАНИИ, А В МАТЕМАТИКЕ ВОЗНИКАЮТ НОВЫЕ МЕТОДЫ И КОНСТРУКЦИИ.
Б. ФИЗИЧЕСКИЕ МОДЕЛИ ЯВЛЕНИЙ СТАНОВЯТСЯ СО ВРЕМЕНЕМ ВСЕ СЛОЖНЕЕ, ПОСКОЛЬКУ ОПИСАНИЕ СТАНОВИТСЯ БОЛЕЕ ДЕТАЛЬНЫМ И КОМПЛЕКСНЫМ: В НЕГО ВКЛЮЧАЮТСЯ ВСЕ НОВЫЕ ЭФФЕКТЫ И ВСЕ БОЛЕЕ МЕЛКИЕ ДЕТАЛИ.