Показаны технологии интеллектуального анализа данных. Особое внимание уделено задачам кластеризации и классификации. Приводится характеристика методов, алгоритмов и этапы решения этих задач с закреплением полученных знаний в виде выполнения лабораторных работ.
Для студентов, обучающихся по направлениям подготовки укрупненной группы «Информатика и вычислительная техника», а также смежным направлениям подготовки и специальностям: «Прикладная математика и информатика», «Системный анализ и управление», «Прикладная математика». Может быть полезно аспирантам и научным работникам, которые в своей деятельности используют модели и методы искусственного интеллекта.