bannerbannerbanner
Система гуманитарного и социально-экономического знания

В. А. Соломатин
Система гуманитарного и социально-экономического знания

Полная версия

К числу междисциплинарных подходов относят и синергетику. Синергетика заострила внимание исследователей на понимании проблемы развития и значительно продвинула вперед наши представления о самоорганизации открытых неравновесных систем, о выборе направлений дальнейшей эволюции в так называемых точках бифуркации, о конструктивной роли случайности в этих процессах.

Большую роль в междисциплинарных исследованиях играет информационный подход. Ныне понятие «информация» активно используется практически во всех науках. И, наконец, раскрытие явлений как природного, так и социального характера, невозможно без количественных измерений, что потребовало использование методов математического анализа.

Итак, основная цель естествознания – описывать, систематизировать, объяснять, раскрывать законы и сущность природных явлений и процессов. Данным обстоятельством задается и его роль в жизни социума. В связи с этим в естествознании различают фундаментальную науку, направленную на решение ее внутренних задач, и прикладную, обусловленную необходимостью осмысления проблем, поставленных извне. Вместе с тем границы между ними достаточно подвижны, поскольку сейчас наука становится неотъемлемой частью производственной деятельности человека: происходит сращивание научной и производственно-технической деятельности, что выражается в появлении крупных научно-производственных объединений.

Наблюдается и количественный рост научных открытий. «Количественный анализ показывает, что темп развития науки как в целом, так и для таких отраслей естествознания, как физика, биология и т. п., а также для математики характеризуется приростом на 5–7 % в год на протяжении последних 300 лет»[78]. В XX веке научная информация за 10–15 лет удваивается. Число ученых в мире к концу нынешнего столетия достигло свыше 5 миллионов человек. Данные обстоятельства составляют сущность закономерности экспоненциального развития науки. Вопрос же о том, какая из естественных наук сегодня лидирует, остается открытым: некоторые авторы по-прежнему считают такой наукой физику, другие – биологию, третьи – генетику. Вместе с тем отметим, что признание лидерства за той или иной наукой достаточно условно, поскольку каждая из них вносит свой вклад в раскрытие законов природы и построение естественнонаучной картины мира.

Тема 2
Эволюция естественнонаучной картины мира

Само понятие «картина мира» выражает целостный образ мира, сформированный под воздействием разных видов знания. Картина мира включает в себя такой срез знаний, полученный из разных наук, который можно обозначить, как «научная картина мира». Научная картина мира – это система общих принципов, понятий, законов, наглядных представлений, формируемая на основе синтеза научных знаний. Она в значительной мере обусловлена представлениями лидирующей фундаментальной области науки. Выделяют три типа научной картины мира:

• общенаучная (выражающая совокупные знания разных наук о человеке, природе и обществе);

• естественнонаучная (объединяющая данные естественных наук, касающихся знаний о природе) и система общих взглядов на общество;

• частнонаучная (выражающая фрагменты действительности, формируемые на базе той или иной науки: физическая, геологическая и пр.).

Итак, естественнонаучная картина мира является частью научной картины мира вообще и выражает систему основных знаний о природе. Она возникает на основе синтеза фундаментальных открытий и результатов исследования всех отраслей и дисциплин естествознания. Появление новых знаний, открытие законов заставляют ученых пересматривать положения прежней научной картины мира, формулировать ее новые идеи и принципы. В связи с этим можно говорить об эволюции научной картины мира вообще и естественнонаучной в частности. Выделяются несколько этапов эволюции естественнонаучной картины мира.

Первый этап – натурфилософский. Этот этап характеризуется синкретичностью научного познания, когда отдельные науки еще не выделились в качестве самостоятельных, а сама наука была неотличима от других видов познания. Поскольку знания о природе были достаточно ограничены, постольку имело место преимущественно умозрительное ее истолкование, хотя, безусловно, натурфилософия выдвинула и ряд гениальных догадок (к примеру, атомистическую гипотезу), раскрывающих тайны природы. В древности натурфилософия фактически сливалась с естествознанием и обозначалась одним понятием – «физика». При этом природа понималась как живое целое, а мир представлялся как упорядоченный космос. Но уже в античной натурфилософии космос подразделялся на два мира: совершенный небесный и несовершенный земной.

Натурфилософские идеи проявились и в период средневековья, когда отдельные элементы античной натурфилософии были приспособлены к религиозным представлениям (например, к религиозному истолкованию происхождения мира, как в христианской, мусульманской или иудейской традициях).

Всплеск натурфилософских представлений наблюдался в эпоху Возрождения. Тогда были использованы многие идеи античной натурфилософии, но обогащенные данными современного тому периоду естествознания. В понимании природы господствовали идеи гилозоизма (всеобщей одухотворенности природы) и пантеизма (растворенности божественного начала в природе); учитывался принцип тождества микро-и макрокосмоса; был выдвинут принцип целостного рассмотрения природы и ряд других предположений. И все-таки стремление к овладению силами природы порождало увлечение оккультными науками: расцвели алхимия и астрология.

В XVII веке начинается бурный процесс дифференциации наук: математика и механика выделяются из натурфилософии. Затем этот процесс коснулся и других естественнонаучных дисциплин. Умозрительное истолкование природы при этом не исчезло, а продолжало существовать, возродившись с новой силой в немецкой классической философии. Так, в философии Шеллинга была предпринята попытка на основе объективного идеализма обобщить достижения современного естествознания (им была выдвинута идея полярности как принципа дифференциации первоначального единства природы, а также рассмотрена идея развития высших форм из низших).

Положения натурфилософии использовались и в конце XIX – начале XX века В. Оствальдом, Х. Дришем, Т. Липпсом для преодоления кризиса, возникшего в новейшем естествознании. Элементы натурфилософии имели место в теории эмерджентной эволюции, «критической онтологии» Н. Гартмана и др.

И вместе с тем, в связи с интенсивным развитием естественных наук, накоплением естественнонаучных знаний натурфилософский период можно считать преодоленным. Еще в эпоху Возрождения с появлением экспериментального естествознания была показана несостоятельность натурфилософских представлений. «Новые взгляды на окружающий мир стали основываться на результатах и выводах естествознания соответствующей эпохи и стали поэтому называться естественнонаучной картиной мира»[79].

Второй этап – механистическая картина мира. Первой естественнонаучной картиной мира, которая базировалась уже на данных собственно научного знания, являлась механистическая, построенная на абсолютизации механической формы движения материи. Ее формирование связывается с именем Г. Галилея, установившего законы движения свободно падающих тел и сформулировавшего принцип относительности в механике. Он же впервые применил и экспериментальный метод в исследовании природы, а также использовал математическую обработку полученных результатов в эксперименте. Если натурфилософия исходила из умозрительного объяснения природы, то теперь утверждалась идея, что всякая гипотеза должна проверяться на опыте.

Большую роль в становлении механистической картины мира сыграли открытые И. Кеплером законы движения планет. Тем самым было доказано, что между миром земным и небесным не существует абсолютного противопоставления, а законы движения небесных тел в принципе не отличаются от законов движения тел земных.

Концептуальную разработку механистической картины мира предпринял И. Ньютон, заложивший основы классической механики. Он сформулировал основные законы динамики и закон всемирного тяготения, ввел количественный подход к описанию движения. В центре его научных интересов было механическое движение, т. е. перемещение тела по отношению к другим телам. Ньютон предполагал, что движение, как и время, пространство – абсолютны, а последние существуют независимо друг от друга; более того, само время обратимо. Согласно данной картине мира, все механические процессы строго детерминированы, а это значит, что возможно точно и однозначно определить состояние механической системы в любой период времени. Случайность как таковая исключалась из этих процессов, при этом утверждалась идея, что все в мире предопределено предшествующими его состояниями (такая позиция нашла четкое выражение у П.С. Лапласа). Весь мир, с позиции такого подхода, предстает как огромный механизм, заведенный Богом, но затем развивающийся по своим законам. Отсюда все виды движения в природе свелись к одному – механическому.

Механическое движение в физике Ньютона связывалось с принципом дальнодействия, согласно которому действия и сигналы могут передаваться в пустом пространстве с любой скоростью.

 

Уже в XVIII веке механистическая картина мира неоднократно критиковалась многими философами и учеными, но лишь открытие новых физических явлений заставило исследователей дополнить данную картину мира электромагнитной.

Третий этап – электромагнитная картина мира. Датский физик Г.Х. Эрстед впервые обнаружил связь между электрическим и магнитным полями. В дальнейшем электромагнитная теория была развита в трудах М. Фарадея, Дж. Максвелла. Было обосновано, что наряду с веществом существует и такая форма материи, как поле, причем физические поля могут иметь разную природу: например, гравитационное (известное со времени Ньютона), электромагнитное. Максвеллом была высказана догадка о существовании поперечных электромагнитных волн, могущих распространяться в пустоте со скоростью, не зависящей от длины волны, что позволило ему выдвинуть идею постоянства скорости света в вакууме. Поскольку электромагнитные волны, как было доказано, распространяются с конечной скоростью, постольку электромагнитное взаимодействие между электрическими зарядами не может происходить мгновенно, согласно принципу дальнодействия. Поэтому был введен принцип близкодействия, по которому один из зарядов создает электромагнитное поле, распространяющееся с конечной скоростью и достигающее второго заряда, воздействует на него. Следовательно, взаимодействие между зарядами немыслимо без участия промежуточного звена – электромагнитного поля. Носителем электромагнитного поля считался неподвижный эфир, а система отсчета, связанная с ним, рассматривалась как особая, абсолютная.

В конце XIX – начале XX века в физике, да и других естественных науках, были сделаны открытия, коренным образом изменившие прежнюю естественнонаучную картину мира.

Четвертый этап – квантоворелятивистская картина мира. Ее формирование связано прежде всего с изучением явлений и процессов в микромире.

Первые экспериментальные результаты, из которых можно было сделать вывод о сложной структуре атомов, были получены М. Фарадеем. Затем Дж. Томсон зафиксировал отрицательно заряженные частицы – электроны. Все это привело к пересмотру положения о неделимости атомов и установлению их сложной структуры. Планетарная модель атома была предложена Э. Резерфордом, однако она отличалась своей неустойчивостью и затем была усовершенствована Н. Бором. Свои представления об особых свойствах атомов Бор изложил в виде следующих постулатов:

• атомная система может находиться только в особых стационарных состояниях (квантовых состояниях), каждому из которых соответствует определенная энергия Еn; в стационарном состоянии атом не излучает;

• при переходе атома из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения.

Все это в конечном итоге отразилось в новом понимании энергии тел: если раньше предполагалось, что энергия излучается непрерывно, то теперь утверждалось, что она может испускаться отдельными квантами.

В 30-е годы XX века в физику вошла идея корпускулярно-волнового дуализма, согласно которой элементарные частицы обладают не только корпускулярными (свойствами вещества), но и волновыми свойствами. Данное положение привело к пересмотру идеи непроходимости границ между веществом и полем и утверждению, что на уровне микромира частицы выступают и как корпускулы, и как волны.

Для изучения явлений микромира в конце 20-х годов XX века создается особое направление в физике – квантовая механика, а впоследствии возникли квантовая электродинамика, теория элементарных частиц и др. В квантовой физике было сделано множество открытий: установлен состав атомного ядра, обнаружено наличие сильных и слабых взаимодействий, изучено явление радиоактивности, сформулированы параметры и свойства элементарных частиц, раскрыты феномены античастицы, резонанса, предложена гипотеза кварков и многое другое.

Помимо физики микромира современную естественнонаучную картину мира обосновывает и теория относительности, в корне изменившая представления о пространстве и времени. Если в классической механике пространство и время выступают как абсолютные, не зависящие друг от друга феномены, то в специальной теории относительности длина и временной промежуток становятся относительными. Одновременно появляются новые абсолютные величины – скорость света и пространственно-временной континуум. Все движение, согласно данной теории, имеет относительный характер, а в природе не существует абсолютной системы отсчета.

Еще более радикальные изменения в учении о пространстве и времени связаны с созданием общей теории относительности. В ней не только пространство и время по отдельности, но и пространственно-временной континуум лишаются абсолютности: последний связывается с гравитацией. Гравитация не существует вне метрики пространства и времени, она воздействует на нее. Поэтому гравитационное поле может быть охарактеризовано как отступление пространственно-временной метрики от евклидовой («искривление» пространственно-временного континуума под действием сил гравитации) и, наоборот, метрика пространства-времени может быть представлена как проявление гравитации.

Современную естественнонаучную картину мира нельзя рассматривать вне идей космологии, базирующейся на положениях астрофизики, релятивистской термодинамики и пр. Обнаружение «разбегания» галактик, открытие нестационарности Вселенной привели к созданию таких ее моделей, которые основываются на постулатах нестационарности, изотропности, однородности.

И, наконец, огромную роль в нынешней естественнонаучной картине мира играют химия и биология. Открытие новых химических элементов, описание их свойств, формулировка периодического закона, исследование химических процессов и т. д. – таков вклад химии в развитие современных представлений о природе. Обнаружение клеточного строения живых тел, изучение молекулярно-генетического уровня биологических структур, а также онтогенетического уровня живых систем, выдвижение эволюционных идей в развитии природы сильно повлияли на утверждение таких принципов современной естественнонаучной картины мира, как системность, глобальный эволюционизм, самоорганизация, историчность.

Системность означает воспроизведение наукой того факта, что Вселенная предстает как наиболее крупная из известных нам систем, состоящая из огромного множества элементов (подсистем) разного уровня сложности и упорядоченности.

Глобальный эволюционизм – это признание невозможности существования Вселенной вне развития, эволюции.

Самоорганизация – наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе ее эволюции.

И, наконец, еще один принцип – признание историчности, т. е. принципиальной незавершенности настоящей, да и любой другой научной картины мира.

В данном случае были перечислены лишь важнейшие достижения ряда естественных наук. Вместе с тем нельзя не отметить, что помимо названных наук и другие вносят существенный вклад в становление современной естественнонаучной картины мира (геология, география и др.).

Приведем хронологию наиболее важных событий, согласно современной естественнонаучной картины мира[80].

• 20 миллиардов лет назад – Большой взрыв.

• 3 минуты спустя – образование вещественной основы Вселенной (фотоны, нейтрино и антинейтрино с примесью ядер водорода, гелия).

• Через несколько сотен тысяч лет – появление атомов (легких элементов).

• 19–17 миллиардов лет назад – образование разномасштабных структур (галактик).

• 15 миллиардов лет назад – появление звезд первого поколения, образование атомов тяжелых элементов.

• 5 миллиардов лет назад – рождение Солнца.

• 4,6 миллиардов лет назад – образование Земли.

• 3,8 миллиардов лет назад – зарождение жизни.

• 450 миллионов лет назад – появление растений.

• 150 миллионов лет назад – появление млекопитающих.

• 2 миллиона лет назад – начало антропогенеза.

Тема 3
Наиболее общие свойства материального мира

Шаг за шагом физика раскрывала новые свойства материального мира. В частности, было обнаружено единство прерывного и непрерывного начал в строении материи, что отразилось в понятиях вещества и поля как фундаментальных ее видах, выражающих дискретность материального мира (атомическое вещество) и его непрерывность (поле). Если понятие вещества как формы материи было известно давно, то обнаружение полевых структур материи происходит в XIX веке (М. Фарадей и Дж. Максвелл разработали концепцию поля как самостоятельной физической реальности).

С появлением квантовых представлений в центре внимания ученых – процесс диалектического синтеза противоположностей прерывного и непрерывного. Корпускула (частица) понимается как нечто строго локализованное в пространстве; поле (волна) характеризуется отсутствием подобной локализации в пространстве, невозможностью разложения на отдельные элементы и наложением волн. Частицы выступают как носители дискретности, а волны – носители непрерывности. Первоначально в физике выдвигалась идея, что свойства прерывности и непрерывности абсолютно противоположны и не совместимы. Но уже в 1900 году М. Планк, исследуя проблему излучения абсолютно черного тела, высказал предположение, что энергия электромагнитных волн излучается и поглощается в виде определенных квантов энергии. В дальнейшем А. Эйнштейн вводит в физику понятие кванта света (фотона), что позволило ему разрешить загадку фотоэффекта, необъяснимую, если исходить из волновой теории света.

Но объяснить природу света, исходя только из его понимания как потока корпускул, тоже было нельзя (в частности, с этих позиций невозможно объяснить такие точно установленные свойства света, как интерференция и дифракция, допускавших только волновое объяснение). Поэтому Л. де Бройль выдвигает гипотезу о наличии у микрочастиц волновых свойств, а Э. Шредингер открывает основной закон движения микрообъектов (волновое уравнение Шредингера). Почти одновременно со Шредингером В. Гейзенберг строит матричную механику, что утвердило корпускулярно-волновой дуализм в физике.

Однако общепринятого физического осмысления данного явления нет и до сих пор (Л. де Бройль выдвинул для объяснения этого феномена теорию так называемой волны-пилота, согласно которой существует классическая частица, но ее движение управляется связанной с ней волной; Э. Шредингер пытался решить проблему на путях отрицания реальности частиц: физической реальностью он объявил Ψ-волны; М. Борн обосновывал статическую интерпретацию Ψ-функции; В. Фок определил Ψ-функцию как описывающую потенциальные возможности взаимодействия микрообъекта с классическим прибором). И тем не менее квантовая теория поля прочно утвердила идею, что любой элементарной частице сопоставляется соответствующее поле и, наоборот, каждому полю сопоставляются частицы, рассматриваемые как кванты этого поля.

Задача осмысления корпускулярно-волнового дуализма привела Бора к формулированию принципа дополнительности, по которому для воспроизведения целостности изучаемого предмета (явления) необходимо применять взаимоисключающие и взаимоограничивающие друг друга классы понятий. Лишь взятые вместе, они исчерпывают всю известную информацию о данном объекте. Информация, даваемая экспериментами по изучению корпускулярных свойств микрообъекта, и информация, полученная из экспериментов по исследованию его волновых свойств, исключают друг друга, но в то же время обе необходимы для его полного описания, дополняя друг друга. Микрообъект не есть ни частица, ни волна, взятые в отдельности, а единство и того, и другого.

Таким образом, в современной естественнонаучной картине мира прочно закрепилась мысль о двух видах материи – веществе и поле, хотя некоторые авторы добавляют сюда и третий вид – физический вакуум. Различия вещества и поля достаточно легко фиксируются лишь на уровне макромира, вместе с тем граница между названными видами становится прозрачной на уровне микрообъектов. Среди фиксируемых различий вещества и поля выделяются следующие:

• по массе покоя (частицы вещества обладают такой массой, а электромагнитные и гравитационные поля, проявляющие себя на уровне макромира, нет; однако уже на уровне ядерных полей это различие не проявляется, так как кванты этих полей обладают конечной массой покоя);

• по закономерностям движения (скорость распространения электромагнитного и гравитационного полей всегда равна скорости света в вакууме (с), а скорость движения частицы вещества всегда меньше с. Но для квантов ядерных полей невозможна скорость движения, равная с);

 

• по степени проницаемости вещество, в отличие от поля, малопроницаемо. Опять же на уровне микромира данное различие фиксируется не всегда (нейтрино как частица вещества оказывается весьма проницаемой, а вот ядерные поля малопроницаемы);

• по степени концентрации массы и энергии (очень большая у частиц и очень малая у электромагнитного и гравитационного полей; в микромире ядерные поля обладают огромной концентрацией массы и энергии);

• по сущностным характеристикам: вещество как корпускулярная, а поле – как волновая сущность. Но данное различие исчезает на уровне микромира, где вещество и поле выступают как дополнительные характеристики, выражающие внутренне противоречивую сущность микрообъектов.

Говоря о третьем виде материи – физическом вакууме, отметим, что согласно квантовой теории поля, частицы, обладающие массой, могут рождаться из физического вакуума, представляющего собой совокупность частиц с соответствующими им античастицами при достаточно высокой концентрации энергии.

К числу важнейших положений современной физики относится идея неуничтожимости движения. В качестве естественнонаучного обоснования принципа неуничтожимости движения выступает открытый в середине XIX в. закон сохранения и превращения энергии, который утверждает существование качественно-своеобразных видов энергии и присущую им способность при определенных условиях превращаться друг в друга и указывает, что в любых процессах в замкнутых системах численное значение энергии остается постоянным. Однако данный закон не раскрывает направления, в котором протекают эти превращения, и сводится лишь к количественным аспектам сохранения энергии.

Аспекты качественного превращения энергии изучаются во втором начале термодинамики и известны как закон возрастания энтропии. Энтропия означает при этом меру беспорядка системы. При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает. «Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу»[81].

В конечном итоге необратимость процессов превращения энергии приведет к переходу всех ее видов в тепловую энергию, которая со временем рассеется, что и будет означать термодинамическое равновесие, или хаос. Именно такая мысль отчетливо прозвучала в концепции «тепловой смерти Вселенной», связанной с именами создателей классической термодинамики У. Кельвина и Р. Клаузиуса. Фактически они не находили процессов, в которых энергия могла бы повышать свое качество. Поэтому критика теории «тепловой смерти Вселенной» строилась, прежде всего, на поиске неких антиэнтропийных процессов в природе, а также на анализе статистического характера закона возрастания энтропии. Первую попытку такого опровержения предпринял Л. Больцман, считая, что возможны флуктуации, отклонения от состояния теплового равновесия.

Кроме того, не совсем корректна и экстраполяция замкнутой системы на всю Вселенную, опять же в силу статистического характера энтропии, поскольку само формулирование более или менее вероятных состояний системы, состоящей из бесконечного числа частиц, оказывается бессмысленным. Любая замкнутая система приходит в состояние равновесия, лишь если она находится в стационарных условиях. А если эти условия с течением времени меняются, то равновесие не наступает. Но так как существует нестационарное гравитационное поле, то для больших систем, подпадающих под его воздействие, состояние равновесия невозможно.

Более того, в физике прочно утвердилась идея, что материя способна самоорганизовываться и самоусложняться. Особое место это положение заняло в синергетике – теории самоорганизации открытых нелинейных диссипативных систем (Г. Хакен, И. Пригожин и др.). Синергетика развивает следующие принципы:

• процессы разрушения и созидания, эволюции и деградации во Вселенной равноправны;

• для процессов самоорганизации необходим ряд условий: система должна быть открытой, т. е. взаимодействовать с окружающей средой, а число подсистем должно превышать определенный минимум; система должна находиться достаточно далеко от точки термодинамического равновесия;

• для процессов самоорганизации существует единый алгоритм, имеющий место во всех системах, где осуществляется подобная самоорганизация.

Именно в открытой системе происходит обмен с окружающей средой веществом, энергией или информацией. «Поскольку между веществом и энергией существует взаимосвязь, постольку можно сказать, что система в ходе своей эволюции производит энтропию, которая не накапливается в ней, а удаляется и рассеивается в окружающей среде. Вместо нее из среды поступает новая энергия и именно вследствие такого непрерывного обмена энтропия системы может не возрастать, а оставаться неизменной»[82].

В открытых системах также имеет место энтропия, но она не накапливается, а выводится в окружающую среду. Такого рода материальные структуры, способные рассеивать энергию, называются диссипативными. Однако существуют случаи самоорганизации иного типа, в которых переход к новым структурам не связан с диссипацией, например, за счет увеличения энтропии самой системы (образование биологических мембран).

Синергетика утверждает, что фундаментальным принципом самоорганизации является возникновение порядка через флуктуации (случайные отклонения системы от некоторого среднего положения). Тем самым синергетика привлекла внимание ученых и философов к проблеме случайности, значение которой до этого практически не учитывалось.

Самоорганизация базируется на принципе положительной обратной связи, согласно которому, изменения, происходящие в системе, не устраняются, а накапливаются, что приводит к образованию новой структуры.

Итак, в синергетике выдвигается положение, что развитие открытых и сильно неравновесных систем протекает путем возрастающей сложности и упорядоченности. При таком развитии различаются две фазы:

• период эволюции с предсказуемыми линейными изменениями, приводящими систему к неустойчивому состоянию;

• выход из критического состояния и переход к новому с большей степенью сложности.

Первая фаза заканчивается тем, что система попадает в точку бифуркации, когда возможен выбор путей ее дальнейшего развития, т. е. идет процесс выбора нового аттрактора (притягивающей цели). Но после того как выбор сделан, система начинает переходить в новое устойчивое состояние. Следовательно – хаос не только разрушителен, но и созидателен, конструктивен, а само развитие осуществляется через неустойчивость, хаотичность.

Развитие большинства открытых систем носит нелинейный характер, а это значит, что в точке бифуркации перед такими системами существует несколько путей эволюции, которые подчас избираются случайно. Тем самым случайность встроена в механизм эволюции. Синергетика настаивает, что подобный механизм самоорганизации имеет место во всех системах открытого типа, находящихся в состоянии неустойчивости.

78Карпенков С.Х. Основные концепции естествознания. – М., 1998. – С. 18.
79Рузавин Г.И. Концепции современного естествознания. – М., 1997. – С. 35.
80Философия и методология науки. – М., 1996. – С. 290.
81Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова. – С. – 64.
82Рузавин Г.И. Концепции современного естествознания. – С. 239.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93 
Рейтинг@Mail.ru