bannerbannerbanner
Лучшие силовые упражнения

Ю. М. Медведько
Лучшие силовые упражнения

Полная версия

Если же вы решили развить истинную функциональную силу своего тела, укрепить здоровье и волю, то, возможно, вам поможет программа мистера Дино.

Как вы, наверное, заметили, мистер Дино делает только три базовых упражнения.

Внимание! Базовые упражнения развивают самые большие группы мышц, которые составляют 2/3 от общей мышечной массы человека. При приседании работают ноги, спина и куча мелких мышц, поддерживающих равновесие. При жиме лежа работают грудь, бицепс, трицепс и широчайшие мышцы спины, плечи и пресс. При становой тяге работают спина, ягодицы, ноги, бицепс, плечи, пресс, трапециевидные мышцы, мышцы шеи и предплечий. Практически все мышцы, которые отвечают за функциональную силу нашего тела. И мистера Дино интересуют именно они. Вся его тренировочная программа держится на трех китах: приседания, жимы и становая тяга. Это база, на которой строится сила, здоровье и даже спортивная карьера.

Итак, первый принцип программы мистера Дино – базовые упражнения.

Второе, на чем настаивает мистер Дино, это максимальная нагрузка на мышцы в небольшом количестве повторений. Это связано с механизмом роста мышц. Здесь придется сделать небольшое отступление в туманную область анатомии и физиологии. Возможно, многие просто пропустят этот научный экскурс, но если кто-то заинтересуется и проявит настойчивость, чтобы основательно разобраться в этом вопросе, тот сможет более осознанно и творчески подходить к своим тренировкам.

Как устроены мышцы, и как они растут

Мышцы состоят из волокон, способных сокращаться под влиянием нервных импульсов. Они являются активным элементом опорно-двигательной системы, так как обеспечивают разнообразные движения при перемещении человека в пространстве, сохранение равновесия, дыхательные движения, сокращение стенок внутренних органов, голосообразование и так далее.

Существует три типа мышечной ткани: скелетная, гладкая и сердечная. Функция сердечной ткани понятна из названия. Гладкие мышцы – это мышцы внутренних органов. Они сокращают стенки сосудов, производят сокращение кишечника, способствуя перемещению пищи, и выполняют множество других жизненно важных функций. Этими двумя видами мышц мы управлять не можем, тут работают одни рефлексы. Скелетные же мышцы – это как раз то, что ты хочешь накачать при помощи железа. Функция скелетных мышц – перемещение частей скелета относительно друг друга. Именно об этих мышцах мы и будем говорить дальше.

Скелетная мышца состоит из поперечно-полосатых мышечных волокон, соединенных рыхлой соединительной тканью в пучки первого порядка. Они, в свою очередь, объединяются в пучки второго порядка и так далее. В результате мышечные пучки всех порядков объединяются соединительной оболочкой и образуют мышечное «брюшко». Соединительнотканные прослойки, которые расположены между мышечными пучками по краям «брюшка», переходят в сухожильную часть мышцы, крепящейся к кости. Во время сокращения происходит укорочение мышечного «брюшка» и сближение ее краев. При этом сократившаяся мышца с помощью сухожилия тянет за собой кость, которая играет роль рычага. Такова несколько упрощенная модель движения.

Мышцы снабжены кровеносными сосудами и нервными окончаниями. В каждом движении принимают участие несколько мышц. Те мышцы, которые действуют совместно в одном направлении и вызывают сходный эффект, называются синергистами, а совершающие противоположно направленные движения – антагонистами.

Чтобы было понятнее, поясню на примере. Сгибателем локтевого сустава является двуглавая мышца плеча (более распространенное название – бицепс), а разгибателем – трехглавая (соответственно – трицепс). Когда сокращаются мышцы-сгибатели локтевого сустава, мышцы-разгибатели, наоборот, расслабляются. Но при постоянной нагрузке на сустав (например, при удержании гантели в горизонтально вытянутой руке) мышцы – сгибатели и разгибатели локтевого сустава действуют уже не как антагонисты, а как синергисты, удерживая руку в этом положении. Так что действия мышц нельзя сводить к выполнению только одной функции. Они многофункциональны.

Таким образом, по характеру выполняемых движений различают следующие виды мышц: сгибатели и разгибатели, приводящие и отводящие, вращающие, приподнимающие и опускающие и т. д. Выделяют также мимические, жевательные и дыхательные мышцы.

На рисунках ты можешь увидеть, где какие мышцы находятся, чтобы иметь представление о том, что и как можно накачать.

Рис. 1. Мышцы фронтальной поверхности тела:

1 – шиловидный отросток лучевой кости; 2 – связка трехглавой мышцы; 3 – межмышечная перегородка; 4 – большая грудная мышца; 5 – ключичная часть; 6 – грудинная часть; 7 – большая круглая мышца; 8 – широчайшая мышца спины; 9 – передняя зубчатая мышца; 10 – косая наружная мышца живота; 11 – прямая мышца живота; 12 – апоневроз; 13 – мышца, напрягающая широкую фасцию бедра; 14 – прямая мышца бедра; 15 – боковая мышца бедра; 16 – средняя мышца бедра; 17 – длинная малоберцовая мышца; 18 – икроножная мышца; 19 – передняя большеберцовая мышца; 20 – длинный разгибатель пальцев; 21 – камбаловидная мышца; 22 – передний удерживатель сухожилий мышц-разгибателей; 23 – боковая лодыжка; 24 – средняя лодыжка; 25 – ахиллово сухожилие; 26 – длинный сгибатель пальцев стопы; 27 – большеберцовая кость; 28 – полуперепончатая мышца; 29 – сухожильное расширение; 30 – коленная чашечка; 31 – коленная связка; 32 – нежная мышца; 33 – длинная приводящая мышца бедра; 34 – портняжная мышца; 35 – гребешковая мышца; 36 – подвздошно-поясная мышца; 37 – паховая связка; 38 – передняя ость подвздошной кости; 39 – белая линия живота; 40 – граница ребер; 41 – грудинная линия; 42 – клювоплечевая мышца; 43 – длинная головка; 44 – трехглавая мышца плеча; 45 – плечевая мышца; 46 – круглый пронатор; 47 – локтевой отросток; 48 – лучевой сгибатель кости; 49 – локтевой сгибатель кости; 50 – длинный разгибатель пальцев; 51 – короткая головка


На рис. 1 видны мышцы фронтальной поверхности тела мужчины.

На рис. 2 представлены мышцы задней части тела.

Универсальным источником энергии в живом организме является молекула АТФ. Под действием особого фермента (АТФаза) АТФ гидролизуется и превращается в АДФ, при этом высвобождается энергия, которая и используется при сокращении мышечных волокон. Но первоначальный запас молекул АТФ в мышце ограничен, поэтому при работе мышцы требуется постоянное восполнение запасов энергии (то есть ресинтез АТФ).

Мышца имеет три источника воспроизводства энергии: расщепление креатинфосфата, гликолиз, кислородное окисление.

Расщепление креатинфосфата. Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ:


АДФ + креатинфосфат = АТФ + креатин.

Рис. 2. Мышцы задней части тела:

1 – верхняя трапециевидная мышца; 2 – средняя трапециевидная мышца; 3 – дельтовидная мышца; 4 – нижняя трапециевидная мышца; 5 – длинная головка трицепса; 6 – средняя головка трицепса; 7 – двуглавая мышца плеча; 8 – плечевая мышца; 9 – круглый пронатор; 10 – лучевой сгибатель кости; 11 – длинная ладонная мышца; 12 – длинная отводящая мышца большого пальца; 13 – плечелучевая мышца; 14 – большая приводящая мышца бедра; 15 – длинная головка двуглавой мышцы бедра; 16 – короткая головка двуглавой мышцы бедра; 17 – нежная мышца; 18 – полусухожильная мышца; 19 – полуперепончатая мышца; 20 – портняжная мышца; 21 – средняя головка икроножной мышцы; 22 – коленная связка; 23 – большеберцовая кость; 24, 26 – камбаловидная мышца; 25 – длинный разгибатель пальцев стопы; 27 – короткая малоберцовая мышца; 28 – длинная малоберцовая мышца; 29 – длинный сгибатель пальцев стопы; 30 – передняя большеберцовая мышца; 31 – боковая головка икроножной мышцы; 32 – головка малоберцовой кости; 33 – коленная связка; 34 – двуглавая мышца бедра; 35 – латеральная широкая мышца бедра; 36 – прямая мышца бедра; 37 – мышца, напрягающая широкую фисцию бедра; 38 – большая ягодичная мышца; 39 – косая наружная мышца живота; 40 – передняя зубчатая мышца; 41 – надкостная мышца; 42 – широчайшая мышца спины; 43 – большая круглая мышца; 44 – малая круглая мышца; 45 – боковая головка трицепса; 46 – плечевая мышца; 47 – двуглавая мышца плеча; 48 – локтевой разгибатель кисти; 49 – короткий лучевой разгибатель кисти; 50 – общий разгибатель пальцев; 51 – длинная отводящая мышца большого пальца; 52 – длинный лучевой разгибатель кости; 53 – плечелучевая мышца


Эта реакция получила название реакции Ломана. Запасы креатинфосфата в волокне невелики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы – в первые несколько секунд.

После того как запасы креатинфосфата будут исчерпаны примерно на 1/3, скорость этой реакции начнет снижаться, а это вызовет включение других процессов ресинтеза АТФ – гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

 

Расщепление креатинфосфата играет основную роль в энергообеспечении кратковременных упражнений максимальной мощности – бег на короткие дистанции, прыжки, метание, тяжелоатлетические и силовые упражнения – продолжительностью до 20–30 с.

Гликолиз. Это процесс распада одной молекулы глюкозы (C6H6O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для «зарядки» двух молекул АТФ:


C6H12O6(глюкоза) + 2H3PO4+ 2АДФ =2C3H6O3(молочная кислота) + 2АТФ + 2H2O.


Гликолиз протекает без потребления кислорода (такие процессы называются анаэробными).

Тут нужно сделать два важных замечания:

а) примерно половина всей выделяемой в данном процессе энергии превращается в тепло и не может использоваться при работе мышц. При этом температура мышц повышается до 41–42 градусов Цельсия;

б) энергетический эффект гликолиза невелик и составляет всего 2 молекулы АТФ из 1 молекулы глюкозы.

Гликолиз играет важную роль в энергообеспечении упражнений, продолжительность которых составляет от 30 до 150 с. К ним относятся бег на средние дистанции, плавание на 100–200 м, велосипедные гонки, длительные ускорения.

Кислородное окисление. Для полноценного включения в действие кислородного окисления глюкозы требуется больше времени. Скорость окисления становится максимальной лишь через 1,5–2 минуты работы мышц, этот эффект широко известен как «второе дыхание».

Распад глюкозы в присутствии кислорода идет сложным путем. Это многостадийный процесс, включающий в себя цикл Кребса и многие другие превращения, но суммарный результат может быть выражен следующей записью:


C6H12O6 (глюкоза) + 6O2+ 38АДФ + 38H3PO4= 6CO2+ 44H2О + 38АТФ.


То есть распад глюкозы по кислородному (аэробному) пути дает в итоге с каждой молекулы глюкозы 38 молекул АТФ. Таким образом, кислородное окисление энергетически в 19 раз эффективнее бескислородного гликолиза. Но за все надо платить – в данном случае платой за большую эффективность является затянутость процесса. Получение молекул АТФ при кислородном окислении возможно только в митохондриях, а там АТФ недоступна АТФазам, которые находятся во внутриклеточной жидкости, – внутренняя мембрана митохондрий непроницаема для заряженных нуклеотидов. Поэтому АТФ из митохондрий доставляется во внеклеточную жидкость достаточно сложным путем, при этом используются различные ферменты, что в целом существенно замедляет процесс получения энергии.

Для полноты картины упомяну еще и о последнем пути ресинтеза АТФ – миокиназной реакции. В случае значительного утомления, когда возможности других путей получения энергии уже исчерпаны и в мышцах накопилось много АДФ, то из 2 молекул АДФ при помощи фермента миокиназа возможно получение 1 молекулы АТФ:


АДФ + АДФ = АТФ + АМФ.


Эту реакцию можно рассматривать как «аварийный» механизм, который не очень эффективен и поэтому организм редко к нему прибегает и только в крайнем случае.

Итак, существует несколько способов получения молекул АТФ. Далее АТФ при помощи катионов кальция и АТФазы «заряжает» миозин энергией, которая используется для спайки с актином и для продвижения актиновой нити на один «шаг».

Здесь есть одна важная особенность. Миозин может иметь различную (бо-льшую или меньшую) активность АТФазы, поэтому выделяют различные типы миозина: быстрый миозин характеризуется высокой активностью АТФазы, медленный миозин – меньшей активностью АТФазы.

Собственно поэтому и скорость сокращения мышечного волокна определяется типом миозина. Волокна с высокой активностью АТФазы принято называть быстрыми волокнами; волокна, характеризующиеся низкой активностью АТФазы, – медленными волокнами.

Быстрые волокна требуют высокой скорости воспроизводства АТФ, обеспечить которую может только гликолиз, так как, в отличие от окисления, он не требует времени на доставку кислорода к митохондриям и доставку энергии от них во внутриклеточную жидкость.

Поэтому быстрые волокна (их еще называют белыми волокнами) предпочитают гликолитический путь воспроизводства АТФ. За высокую скорость получения энергии белые волокна платят быстрой утомляемостью, так как гликолиз ведет к образованию молочной кислоты, накопление которой вызывает усталость мышцы и в конечном итоге останавливает ее работу.

Медленные волокна не требуют столь быстрого восполнения запасов АТФ и для обеспечения потребности в энергии используют путь окисления. Медленные волокна еще называют красными волокнами. Эти волокна окружены массой капилляров, которые необходимы для доставки с кровью большого количества кислорода. Энергию красные волокна получают путем окисления в митохондриях углеводов и жирных кислот.

Медленные волокна являются низкоутомляемыми и способны поддерживать относительно небольшое, но длительное напряжение.

Итак, мы вкратце познакомились со строением и энергетическим обеспечением мышц. Нам осталось выяснить, что же происходит с мышцами во время тренировки.

Микроскопические исследования показывают, что в результате тренировок в ряде мышечных волокон нарушается упорядоченное расположение миофибрилл, наблюдается распад митохондрий, а в крови повышается уровень лейкоцитов, как при травмах или инфекционном воспалении.

Разрушение внутренней структуры мышечного волокна во время тренировки (то есть микротравмы) приводит к появлению в волокне обрывков белковых молекул.

Иммунная система воспринимает обрывки белка как чужеродный белок, тут же активизируется и старается их уничтожить.

Итак, на тренировках мы разрушаем свои мышечные волокна и тратим запасы АТФ.

Но мы ходим в тренажерный зал вовсе не для того, чтобы израсходовать энергию и получить микротравмы. Мы ходим, чтобы накачать мышцы и стать сильнее.

Это становится возможным только благодаря такому явлению, как суперкомпенсация (сверхвосстановление). Суперкомпенсация проявляется в том, что в строго определенный момент отдыха после тренировки уровень энергетических и пластических веществ превышает исходный дорабочий уровень.

Закон суперкомпенсации справедлив для всех биологических соединений и структур, которые в той или иной мере расходуются при мышечной деятельности. К ним относятся: креатинфосфат, структурные и ферментные белки, фосфолипиды, клеточные органеллы (митохондрии, лизосомы).

В целом явление суперкомпенсации может быть отражено графиком (рис. 3).

Как видно из графика, фаза суперкомпенсации длится достаточно короткое время. Постепенно уровень энергетических веществ возвращается к норме, и тренировочный эффект исчезает.

Больше того, если проводить следующую тренировку до фазы суперкомпенсации, то это приведет только к истощению и перетренированности. Если проводить следующую тренировку после фазы суперкомпенсации, то следы предыдущей работы уже сгладятся и тренировка не принесет ожидаемого результата – увеличения мышечной массы и силы.

Чтобы добиться выраженного эффекта, нужно проводить тренировку строго в фазе суперкомпенсации.

Итак, из вышеизложенного ясно, что проводить тренировки надо в фазе суперкомпенсации. Но тут мы встречаемся с одной сложной проблемой. Дело в том, что соединения и структуры, которые расходуются или разрушаются при тренировке, имеют разное время восстановления и достижения суперкомпенсации!

Рис. 3. Суперкомпенсация: а – разрушение /расходование во время тренировки; б – восстановление; в – сверхвосстановление; г – возвращение к исходному уровню


Фаза суперкомпенсации креатинфосфата достигается через несколько минут отдыха после нагрузки.

Фаза суперкомпенсации содержания гликогена в мышцах наступает через 2–3 суток после тренировки, а к этому моменту уровень креатинфосфата уже вступит в фазу утраченной суперкомпенсации.

А вот для восстановления белковых структур клеток, разрушенных в ходе тренировок, может потребоваться еще больший период времени (до 7–12 дней), в течение которого уровень гликогена в мышцах уже вернется к исходному уровню.

Поэтому нужно в первую очередь определиться, какой из этих параметров наиболее важен с точки зрения наращивания силы и мышечной массы, а каким из них можно и пренебречь.

1  2  3  4  5  6  7  8  9  10  11  12  13  14 
Рейтинг@Mail.ru