Понижение глобальной температуры ведет к понижению стерического (плотностного) уровня Мирового океана, который определяется разностью в плотности океанических вод, которая зависит от разности их температуры и солености.
Термохалинная циркуляция (ТЦ) представляет собой крупно масштабную океаническую циркуляцию или конвейер, в котором происходит движение водных масс за счет перепада плотности воды, образовавшегося вследствие неоднородности распределения температуры и солёности в океане. В самом наименовании термина заложены два фактора, которые вместе определяют плотность морской воды – температура (термо) и солёность (халина). ТЦ является глобальным объединением всех существующих течений Мирового океана. Рассмотрим некоторые из них. Стоит обратить внимание на то, что вариации солнечной активности через атмосферную и гидросферную циркуляцию определяют изменение размеров ледового покрытия в полярных областях Арктики (Северный полюс) и Антарктики (Южный полюс). Именно количество атмосферных осадков и температурный режим атмосферы регулируют объемы накопления и таяния ледниковых щитов.
Идея солнечного влияния на льдообразование в полярных областях была высказана в 1918 году немецким географом, профессором Людвигом Меккингом. Он утверждал, что количество льда в морях варьирует, и что это вызвано вариациями солнечной активности – периоды максимальной солнечной активности способствуют уменьшению количества льда, а периоды минимальной – его увеличению.
Активное таяние льдов (что мы и наблюдаем в настоящее время) приводит к тому, что огромная масса пресной, холодной, плотной воды уносится Лабрадорским течением (ЛТ), которое также является холодным морским течением. Траектория течения – между побережьем Канады и Гренландией, устремленное в южном направлении из моря Баффина до Ньюфаундлендской банки. У Ньюфаундленда ЛТ смешивается с тёплым струйным течением Гольфстрим (Г), отклоняя его в сторону Европы. Холодные воды подныривают под Г, то есть происходит процесс опреснения и охлаждения стоковым течением. Когда степень опреснения достигает определенного уровня, то плотность вод ЛТ уменьшается, оно поднимается на поверхность и преграждает дорогу Гольфстриму, который значительно влияет на климат Западной Европы. Так, например, в шотландском Глазго средняя температура в январе месяце составляет +3,5 градуса, а в находящейся на той же широте Москве –9,5. Все из-за того, что Глазго находится ближе к “батарее” Гольфстрима. Схема течения Гольфстрима приведена на рис. 1.6.
Гольфстрим представляет собой систему течений, простирающаяся от полуострова Флорида до Скандинавии, Шпицбергена, Баренцева моря и Северного Ледовитого океана. Ширина потока составляет 70–90 км на юге, увеличивается до 100–120 км на широте пролива Хаттерас и охватывает океанские воды до глубины 0,7–0,8 км. Ежегодная тепловая мощность Гольфстрима оценивается 1,4·1015 Дж. Температура на поверхности потока достигает +25°С в Мексиканском заливе, а его скорость – 6–10 км/ч и уменьшается до 3–4 км/ч у Ньюфаундлендской банки.
Рис.1.6. Схема течения Гольфстрима
Теплые воды Гольфстрима обогревают нижние слои атмосферы над океаном, а западные ветры переносят это тепло в Европу. Благодаря Гольфстриму климат Европы на 11-20°С теплее своих климатических норм, а также норм других регионов планеты, расположенных на этой же широте.
Температурный режим Гольфстрима в определенной мере связан с Североатлантической осцилляцией (осцилляция – колебания; САО/САК), которая формируется под действием долговременных вариаций солнечной активности и также оказывает существенное влияние на изменение атмосферной циркуляции.
Североатлантическая осцилляция-это непостоянство климата на севере Атлантического океана, что проявляется, прежде всего, в изменении температуры морской поверхности.
Североатлантическое колебание является одной из важнейших характеристик крупномасштабной циркуляции атмосферы в северном полушарии. Оно выражено во все сезоны года и проявляется в масштабах от нескольких суток до нескольких столетий. В многочисленных работах US CLIVAR (Climatic Variability and Predictability/Климатическая изменчивость и предсказуемость), показано влияние САК на основные гидрометеорологические поля в атлантико-европейском регионе.
Климатические колебания в Северном полушарии связаны с североатлантической осцилляцией, которая измеряется на 2-х станциях: одна станция находится на Канарских островах, другая – в Исландии. Измеряемые показатели качаются: то на одном возрастают, то на другом снижаются и наоборот. Сам Гольфстрим тоже то разгоняется, то замедляется, который обогревает Европу. Но были случаи, когда Гольфстрим прекращал двигаться, 10 000 – 11 000 лет назад, когда прекращалось таяние ледников в последнем, сартанском периоде. Под канадским ледниковым щитом существовало озеро, которое называлось по имени исследователя Агассис. Это было огромное озеро пресноводное озеро, которое в один момент выплеснулось в Атлантический океан и остудило его поверхность, и Гольфстрим не мог работать, не стало энергии, чтобы двигаться.
Существует и южная осцилляция, которую измеряют в Южном полушарии, оно контролирует Эль-Ниньо (отрицательные значения индекса) и Ла-Ниньо (положительные значения индекса). Важное значение в климатическом изменении играют стоковые ветры, которые формируются над ледниковыми шапками и стекают в разные стороны в область теплых морей.
Ветровые поверхностные течения, такие как Гольфстрим, перемещают воды из экваториальной части Атлантического океана к северу. Эти воды попутно охлаждаются и, в итоге, за счёт увеличившейся плотности, погружаются ко дну (формируя Североатлантическую глубинную водную массу). Плотные воды на глубинах перемещаются в сторону, противоположную направлению движения ветровых течений. Хотя бо́льшая их часть поднимается обратно к поверхности в районе Южного океана, самые “старые” из них (с транзитным временем около 1600 лет) поднимаются в северной части Тихого океана. Таким образом, между океанскими бассейнами существует постоянное перемешивание, которое уменьшает разницу между ними и объединяет океаны Земли в глобальную систему. Во время движения водные массы постоянно перемещают как энергию (в форме тепла), так и вещество (частицы, растворённые вещества и газы), поэтому термохалинная циркуляция существенно влияет на климат Земли.
. Парниковый эффект – это повышение температуры нижних слоёв атмосферы за счёт того, что некоторые газы препятствуют излучению тепловой энергии с поверхности планеты в космическое пространство. Играет решающую роль в сохранении жизни на Земле – если бы парникового эффекта не было, температура была бы почти на 32-39 градусов ниже, чем сейчас. Земля находится в состоянии теплового равновесия. Средние годовые температуры земной поверхности и атмосферы в любой точке Земли мало меняются от года к году. Это означает, что на верхней границе атмосферы солнечная радиация уравновешивается излучением Земли. Но не всё излучение Земли уходит в космическое пространство. Его значительная часть поглощается находящимися в атмосфере водяным паром и парниковыми газами.
Парниковый эффект имеет место не только на Земле. К примеру, сильный парниковый эффект на соседней планете – Венере. Атмосфера Венеры почти целиком состоит из углекислого газа, и в результате поверхность планеты разогрета до 475°С. Климатологи полагают, что Земля избежала такой участи благодаря наличию на ней океанов. Океаны поглощают атмосферный углерод, и он накапливается в горных породах, таких как известняк. Посредством этого углекислый газ удаляется из атмосферы. На Венере нет океанов, и весь углекислый газ, который выбрасывают в атмосферу вулканы, там и остается. В результате на планете наблюдается неуправляемый парниковый эффект.
Парниковые газы – газообразные составляющие атмосферы природного, или антропогенного происхождения, которые поглощают и переизлучают инфракрасное излучение.
Явление естественного парникового эффекта позволяет поддерживать на поверхности Земли температуру, при которой стало возможным возникновение и развитие жизни. Это было обусловлено естественными изменениями климата в последние несколько миллионов лет. Физические процессы, из-за которых парниковые газы могут повысить температуру воздуха, известны с конца XIX в. Но до недавнего времени антропогенным парниковым газам придавалось мало значения. Антропогенное увеличение концентрации парниковых газов приводит к повышению температуры поверхности Земли, изменению климата и негативным геоэкологическим последствиям, рис. 1.7.
Рис. 1.7. Воздействие парникового эффекта на природные процессы и его геоэкологические последствия
Список парниковых газов, подлежащих ограничению, определен в Приложении А к Киотскому протоколу (подписан в Киото (Япония) в декабре 1997г. 159 государствами) и включает двуокись углерода (CO2), метан (CH4), закись азота (N2O), перфторуглероды (ПФУ), гидрофторуглероды (ГФУ) и гексафторид серы (SF6).
Очень обстоятельные исследования парникового эффекта были проведены в Национальном Центре атмосферных исследований (США). Они так оценили удельный вес газов в создании эффекта: водяной пар – 60%, углекислый газ – 26%, озон – 8%, метан – 6%. Дальнейшие исследования показали, что облака (водяного пара) усиливают парниковый эффект в нелинейной пропорции. Тогда доля водяного пара возрастает до 70%, а доля углекислого газа снижается до 22%. Водяной пар оказывает более сильное воздействие потому, что его в атмосфере значительно больше, чем углекислого газа и значимость углекислого газа для парникового эффекта во много раз ниже, чем это признано.
Водяной пар – самый распространенный парниковый газ – исключен из данного рассмотрения, так как нет данных о росте его концентрации в атмосфере (связанная с ним опасность не просматривается). В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, повышение влажности способствует развитию облачного покрова, а облака в атмосфере отражают прямой солнечный свет, тем самым увеличивая альбедо Земли. Альбедо- характеристика отражательной (рассеивающей) способности поверхности земли. Повышенное альбедо приводит к антипарниковому эффекту, несколько уменьшая общее количество поступающего солнечного излучения и дневной прогрев атмосферы
Двуокись углерода (углекислый газ) (СО2). Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность биосферы, деятельность человека. Примерно 65% антропогенных выбросов углекислого газа в атмосферу связано со сжиганием ископаемого топлива (нефти, газа, угля и др.) и 35%– с уменьшением его поглощения, вызванного освоением новых земель и массовой вырубкой лесов. При этом примерно 45% от общего количества выбросов углекислого газа остаётся в атмосфере, 30%– поглощается океаном, а остальная часть усваивается биосферой.
Некоторые промышленные процессы приводят к значительному выделению углекислоты (например, производство цемента). Основными потребителями углекислого газа являются растения, однако, в состоянии равновесия, большинство биоценозов за счет гниения биомассы производит приблизительно столько же углекислого газа, сколько и поглощает. Углекислый газ является "долго живущим" в атмосфере. Круговорот диоксида углерода представлен на рис. 1.8.
Оцениваемый эффективный период пребывания для СО2 колеблется в пределах от 50 до 200 лет.
Метан (СН4) имеет как природное, так и антропогенное происхождение. Парниковая активность метана примерно в 21 раз выше, чем у углекислого газа. Время жизни метана в атмосфере составляет примерно 12 лет. Сравнительно короткое время жизни в сочетании с большим парниковым потенциалом делает его кандидатом для смягчения последствий глобального потепления в ближайшей перспективе.
Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов).
Рис. 1.8. Круговорот диоксида углерода
В период с 1000 по 1700 годы концентрация метана упала на 40%, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель, пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов. Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет.
Закись азота (N2O) – третий по значимости парниковый газ Киотского протокола. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т. д. На него приходится около 6% глобального потепления.
Перфторуглероды – ПФУ (Perfluorocarbons – PFCs). Углеводородные соединения, в которых фтор частично замещает углерод. Основным источником эмиссии этих газов является производство алюминия, электроники и растворителей. При алюминиевой плавке выбросы ПФУ возникают в электрической дуге или при так называемых анодных эффектах.
Гидрофторуглероды (ГФУ) – углеводородные соединения, в которых галогены частично замещают водород.
Гексафторид серы (SF6) – парниковый газ, использующийся в качестве электроизоляционного материала в электроэнергетике. Гексафторид серы (элегаз, или шести фтористая сера) – неорганическое вещество, при нормальных условиях тяжелый газ, в 5 раз тяжелее воздуха. Выбросы происходят при его производстве и использовании. Чрезвычайно долго сохраняется в атмосфере и является активным поглотителем инфракрасного излучения. Это соединение, даже при относительно небольших выбросах, обладает потенциальной возможностью влиять на климат в течение продолжительного времени в будущем.
Озон– парниковый газ, находящийся как в стратосфере, так и в тропосфере. Но определить его значение в парниковом сложнее по сравнению с другими газами, так как территориальное распределение этого газа очень изменчиво.
В 2000–2010 гг. глобальные выбросы парниковых газов (ПГ) росли быстрее (на 2,2% в год), чем в три предшествующих десятилетия (на 1,3% в год в 1970–2000 гг.), несмотря на глобальный экономический кризис и усилия растущего числа стран реализовать Рамочную конвенцию ООН об изменении климата и Киотский протокол. За последние четыре десятилетия накопленные выбросы углекислого газа увеличились с 900 млрд т СО2 в 1970 г. до 2 000 млрд т в 2010 г. Выбросы ПГ от сжигания топлива в 2013 г. превысили 32 млрд т СО2, и при отсутствии жестких мер политики по их контролю могут вырасти до 50–70 млрд СО2 к 2050 г. и до 90 млрд т СО2 – к 2100 г.
Расчеты показывают, что без существенных дополнительных мер по контролю за выбросами в ближайшие 20 лет будет практически невозможно удерживать концентрацию ПГ в атмосфере в рамках 450–500 ppm. Это означает, что потребуются большие усилия по снижению выбросов в 2030–2050 гг. или широкомасштабное применение технологий удаления ПГ из атмосферы либо ее охлаждения в последующие годы. Хотя смягчение воздействия на климат сопряжено с существенными затратами, они могут быть снижены за счет устранения барьеров для проникновения на рынок низкоуглеродных технологий и возобновляемых источников энергии.
Без сомнения человеческая деятельность в масштабах планеты негативно влияет на окружающую среду. В 2014 году глобальные выбросы по вине человека составили 9,795 гигатонн углерода или 35,9 гигатонн углекислого газа CO2, природными процессами (вулканическая деятельность, дегазация глубинных разломов, выделения мировым океаном, разложение органики, и т. д.) выбросы составили 119 гигатонн углерода или 439 гигатонн CO2. Человеческая деятельность слишком мала по сравнению с природными процессами, чтобы серьезно влиять на выбросы СО2 в атмосферу.
По всему миру карту усеивают вулканы всех форм и размеров. Вдоль суши вокруг Тихого океана расположены хорошо известные вулканы Тихоокеанского огненного кольца. От Алеутских островов до гор Анд в Чили эти вулканы сформировали свою местную и региональную среду обитания.
По сути, вулканы представляют собой геологические объекты, которые выделяют магматический материал из-под поверхности Земли на поверхность, рис. 1.9. Магмы являются отправной точкой для создания вулкана. Образование магмы осуществляется несколькими способами:
1) субдукция океанической коры,
2) создание горячей точки из мантийного плюма,
3) расхождение океанических или континентальных плит.
В горячих точках океанической коры развиваются различные магматические системы, основанные на скоростях движения плит. Гавайи и архипелаг Мадейра (у западного побережья Африки) являются примерами вулканических комплексов.
Рис.1.9. Извержение вулкана
В то время как большинство вулканов выбрасывают некоторую смесь одних и тех же нескольких газов, выбросы каждого вулкана содержат разное соотношение этих газов. Водяной пар является преобладающей молекулой газа, образующейся, за ним следуют диоксид углерода (CO2) и диоксид серы (SO2). Выброс серы из вулканов оказывает огромное воздействие на окружающую среду, и это важно учитывать при изучении крупномасштабных последствий вулканизма. Вулканы являются основным источником серы (в форме SO2), которая попадает в стратосферу, где затем вступает в реакцию с радикалами OH с образованием серной кислоты (H2SO4). Молекулы серной кислоты конденсируются на существующих аэрозолях и могут стать достаточно большими, чтобы образовать ядра для дождевых капель и выпадать в осадок в виде кислотных дождей. Дождь, содержащий повышенные концентрации SO2, убивает растительность, что затем снижает способность биомассы района поглощать CO2 из воздуха. Это также создает неблагоприятную среду в ручьях, озерах и грунтовых водах. Повышенная концентрация серы в атмосфере может привести к разрушению озонового слоя и к ее потеплению.
Вулканы с кислым составом расплава производят чрезвычайно взрывоопасные извержения, которые могут выбрасывать огромное количество пыли и аэрозолей высоко в атмосферу. Эти выбросы твердых частиц являются мощными факторами, влияющими на климат, и могут спровоцировать самые разнообразные реакции, включая потепление, похолодание и подкисление дождевой воды. Реакция климата зависит от высоты пылевого облака, а также от размера и состава пыли. Некоторые вулканические силикаты очень быстро охлаждались, создавая стекловидную текстуру; их темный цвет и отражающая природа поглощают часть излучения и отражают остальное. Такой вулканический материал, впрыскиваемый в стратосферу, блокирует солнечное излучение, нагревая этот слой атмосферы и охлаждая область под ним. Характер ветра может распространять пыль по обширным географическим регионам; например, извержение вулкана Тамбора в Индонезии в 1815 году произвело так много пыли, что похолодание на 1 градус по Цельсию было отмечено даже в Новой Англии и продолжалось в течение нескольких месяцев. Европейцы и американцы назвали его эффект “годом без лета”.
Вулканические выбросы содержат следовые количества тяжелых металлов, которые могут влиять на гидросферу, когда они попадают в нижние слои атмосферы. Когда большие количества этих выбросов собираются на небольшой площади, последствия загрязнения становятся первостепенными.
Краткосрочное (от месяцев до лет) воздействие вулканизма на атмосферу, климат и окружающую среду в значительной степени зависит от местоположения, времени, потока, величины и высоты выбросов сернистых газов. Эпизодические взрывные извержения представляют собой основное возмущение стратосферного аэрозоля. В тропосфере картина менее ясна, но значительная часть глобального тропосферного сульфатного бремени может быть вулканогенной. Сульфатный аэрозоль влияет на радиационный баланс Земли, рассеивая и поглощая коротковолновое и длинноволновое излучение, а также действуя как ядра конденсации облаков. Когда облака, содержащие вулканическую серу в газовой и аэрозольной фазах, попадают в пограничный слой и на поверхность Земли, это может привести к серьезным последствиям для окружающей среды и здоровья. Примерами воздействия на окружающую среду и здоровье являются потери сельского хозяйства из-за кислотных дождей и затенения частицами, ущерб экосистемам и загрязнение гидросферы.
Интенсивность извержения вулкана определяется высотой и эффектом выброшенного материала. Хотя крупные извержения происходят реже, чем мелкие, более крупные извержения все же выбрасывают в атмосферу больше твердых частиц. Такое поведение выбрасываемого материала в течение всего года оказывает незначительное воздействие на атмосферу по сравнению с более крупными извержениями. Со временем изменения в составе извержений меньшего масштаба приводят к изменениям атмосферных циклов и глобального климата. Крупномасштабные извержения немедленно вызывают изменения в атмосфере, что, в свою очередь, приводит к климатическим изменениям в непосредственной близости. Чем больше вулканическое извержение, тем выше высота, достигнутая выброшенными силикатными материалами. Более крупные извержения в среднем выделяют не так много, как более мелкие извержения. Это связано с периодом возврата извержений и количеством выброшенного материала за одно извержение. Высота выброса серы в атмосферу представляет собой еще один важный фактор, определяющий воздействие на климат. Более интенсивные извержения с большей вероятностью поднимают реактивные сернистые газы в стратосферу, где они могут генерировать климатически эффективный аэрозоль.
Местоположение вулкана сильно влияет на географическое распределение атмосферного нагрева и развитие планетарных волн, которые влияют на циркуляцию воздуха (особенно в северном полушарии). Другим важным фактором является то, что высота тропопаузы меняется в зависимости от широты – в тропиках она составляет около 16-17 км над уровнем моря, но опускается до 10-11 км в высоких широтах. Однако есть два фактора, которые ограничивают этот эффект. Во-первых, извержение в высоких широтах будет иметь более ограниченный эффект, чем в низких широтах, потому что дальше от тропиков меньше солнечной энергии для перехвата. Во-вторых, атмосферная циркуляция работает таким образом, чтобы ограничить последствия извержений в высоких широтах. Тропическое извержение, которое выбрасывает аэрозоль в стратосферу, приводит к локальному нагреву. Напротив, вулканический аэрозоль, выбрасываемый в стратосферу из высокоширотных вулканов, будет иметь тенденцию оказывать противоположное влияние на температурный градиент, приводя к застою меридионального воздушного потока.
Вулканы не только влияют на климат, на них влияет климат. Во времена оледенения вулканические процессы замедляются. Росту ледников способствует слабая летняя жара и усиление зимних холодов, а когда ледники становятся больше, они становятся тяжелее. Этот избыточный вес вызывает обратный эффект на способность магматической камеры образовывать вулкан. Термодинамически магма будет легче растворять газы, когда давление на магму больше, чем давление пара растворенных компонентов. Накопление ледников обычно происходит на больших высотах. Накопление льда может привести к разрушению магматической камеры и кристаллизации под землей. Причина разрушения магматической камеры возникает, когда давление льда, давящего на Землю, больше, чем давление, оказываемое на магматическую камеру в результате тепловой конвекции в мантии. Данные керна льда из ледников дают представление о прошлом климате. Изотопы кислорода и запись ионов кальция являются важными показателями климатической изменчивости, в то время как пики содержания сульфат-ионов (SO4) и электропроводности льда указывают на выпадение вулканического аэрозоля. Как видно из ледяных кернов, извержения вулканов в тропиках и южном полушарии не зафиксированы в ледяных щитах Гренландии. Осадки от тропических извержений можно наблюдать на обоих полюсах, хотя это занимает почти два года и состоит только из сернистых осадков. Одним из поразительных открытий ледяного керна является свидетельство многочисленных крупных извержений, которые иначе не были обнаружены в записях тефры. Одно из предостережений к этому подходу заключается в том, что она не является безотказной. Чем больше глубина, с которой извлекается керн, тем больше вероятность того, что он подвергся деформации, преобладающие ветры и химический состав атмосферы играют большую роль в перемещении вулканических летучих веществ от их источника к их конечным местоположениям на поверхности или в атмосфере.
Во время мелового периода (мелово́й пери́од начался145,0 млн лет назад, закончился 66,0 млн лет назад). Земля испытала необычную тенденцию к потеплению. Одно из объяснений этого потепления объясняются тектоническими и магматическими силами. Одна из теорий – магматический суперплюм, вызывающий высокий уровень CO2 в атмосфере. Уровень углекислого газа в меловом периоде мог быть в 3,7-14,7 раза выше, чем в настоящее время, вызывая в среднем 2,8-7,7 градуса Цельсия. Тектонически, движения плит и падение уровня моря могут вызвать дополнительные 4,8 градуса Цельсия во всем мире. Совместное воздействие магматических и тектонических процессов могло привести к тому, что температура Земли мелового периода могла быть на 7,6-12,5 градуса Цельсия выше, чем сегодня.
Вулканы представляют мощные образы и силы в ландшафте Земли. Образование вулкана зависит от его местоположения и магматического происхождения. Магмы будут оставаться расплавленными до тех пор, пока давление и температура не позволят кристаллизоваться и выделять газы. Во время выделения газов магматический очаг поднимется и встретится с поверхностью Земли, вызывая извержение вулкана. В зависимости от состава расплавленного материала, этот вулкан может содержать различные газы. Большинство газов, выбрасываемых при извержении вулканов, являются парниковыми газами и вызывают изменения атмосферы. Эти атмосферные изменения затем заставляют климат, как региональный, так и локальный, достигать нового равновесия с новой атмосферой. Эти изменения могут проявляться в виде похолодания, потепления, увеличения количества осадков и многих других.
Недавние статьи предполагают, что рост вулканизма в значительной степени ответственен за тенденцию к похолоданию. Хотя Год без лета в 1816 году пришелся на период минимума Далтона, основной причиной низких температур в том году стало взрывное извержение вулкана Тамбора в Индонезии годом ранее, которое стало одним из двух крупнейших извержений за последние 2000 лет. Следует также учитывать, что рост вулканизма, возможно, был вызван более низким уровнем солнечного излучения, поскольку существует слабая, но статистически значимая связь между уменьшением солнечного излучения и увеличением вулканизма.
Извержения вулканов, оледенения, дрейф континентов и смещение полюсов Земли – мощные природные процессы, влияющие на климат Земли. В масштабе нескольких лет вулканы могут играть главную роль. В результате извержения вулкана Пинатубо в 1991 года на Филиппинах на высоту 35 км было заброшено столько пепла, что средний уровень солнечной радиации снизился на 2,5 Вт/м2. Однако эти изменения не являются долгосрочными, частицы относительно быстро оседают вниз. В масштабе тысячелетий определяющим климат процессом будет, вероятно, медленное движение от одного ледникового периода к следующему.
Вулканы воздействуют на природную среду и на человечество несколькими способами. Во-первых, прямым воздействием на окружающую среду извергающихся вулканических продуктов (лав, пеплов и т.п.), во-вторых, воздействием газов и тонких пеплов на атмосферу и тем самым на климат, в-третьих, воздействием тепла продуктов вулканизма на лед и на снег, часто покрывающих вершины вулканов, что приводит к катастрофическим селям, наводнениям, лавинам, в-четвертых, вулканические извержения обычно сопровождаются землетресениями и т.д. Но особенно долговременны и глобальны воздействия вулканического вещества на атмосферу, что отражается на изменении климата Земли. При катастрофических извержениях выбросы вулканической пыли и газов, сублимирующих частички серы и других летучих компонентов, могут достигать стратосферы и вызывать катастрофические изменения климата. Такие извержения, часто имеющие эксплозивный стиль, особенно характерны для островодужных вулканов. Фактически при таких извержениях мы имеем природную модель "ядерной зимы". Эмиссия газов пассивно дегазирующих вулканов в целом может оказывать глобальное влияние на состав атмосферы. Так плинианские и коигнимбритовых колонны выносили вулканический материал в тропосферу с образованием аэрозольного облака, полярных дымок и нарушением состояния полярного озонового слоя. В качестве примера стоит привести извержение вулкана Уайнапутина, Перу. 19 февраля 1600 года (6 баллов по шкале вулканических извержений VEI). Сильнейшее извержение вулкана в Южной Америке за историческое время, которое, по некоторым оценкам, вызвало общемировое понижение температуры и стало причиной неурожая в России 1601-1603 и начала Смутного времени.