bannerbannerbanner
Выбор катастроф

Айзек Азимов
Выбор катастроф

Полная версия

Разумеется, это не значит, что мы должны предположить, будто бы уменьшение энтропии может происходить только благодаря обдуманным действиям людей. По-видимому, жизнь сама по себе, совершенно независимо от человеческого интеллекта, бросает вызов второму началу термодинамики. Индивидуумы умирают, но рождаются новые индивидуумы, и молодость, как всегда, торжествует. Растительность умирает зимой, но весной она снова оживает. Жизнь существует на Земле более трех миллиардов лет, а возможно, и больше, и не проявляет никаких признаков замедления. Более того, она проявляет множество признаков «подзаводки», поскольку на протяжении всей истории жизни на Земле она, жизнь, становилась все более сложной как в отношении отдельных организмов, так и в отношении экологической паутины, которая полностью ее опутала. История биологической эволюции демонстрирует огромное уменьшение энтропии.

Исходя из этого, кое-кто и в самом деле пытается характеризовать жизнь как средство уменьшения энтропии. Окажись это правдой, и Вселенная не двигалась бы больше к тепловой смерти, так как, где бы жизнь ни проявляла свое воздействие, она бы автоматически вела к уменьшению энтропии. Казалось бы, это очевидно, однако это совсем не так. Жизнь – не средство уменьшения энтропии, и сама по себе она не может предотвратить тепловую смерть. Подобная мысль – следствие неправильного понимания, стремления выдать желаемое за действительное.

Законы термодинамики применимы к замкнутым системам. Если для снижения энтропии используется насос, который накачивает воду наверх, насос надо рассматривать как часть системы. Если для снижения энтропии используется холодильник, который охлаждает объект ниже комнатной температуры, холодильник надо рассматривать как часть системы. Нельзя считать, что насос или холодильник существуют сами по себе. К чему бы они ни были подключены, каким бы ни был источник их энергии, они должны рассматриваться как часть системы.

В любой момент, когда люди или орудия людей своими действиями уменьшают энтропию и поворачивают вспять спонтанное явление, оказывается, что люди и орудия, занятые в процессе, подвержены увеличению энтропии. Кроме того, увеличение энтропии людей и их орудий неизменно больше, чем уменьшение энтропии той части системы, в которой спонтанное явление поворачивается в обратном направлении. Поэтому энтропия всей системы возрастает, всегда возрастает.

Разумеется, отдельный человек может за свою жизнь повернуть вспять очень много спонтанных явлений; люди, работая сообща, создали огромную технологическую сеть, которая охватывает всю Землю – от пирамид Египта и Великой китайской стены до самых современных небоскребов и плотин. Могут ли люди, подверженные такому огромному росту энтропии, продолжать существование?

Однако нельзя рассматривать человека самого по себе. Он не образует замкнутой системы. Человек ест, пьет, дышит, удаляет отходы, и все это – каналы связи со внешней Вселенной, по которым поступает или уходит энергия. Если рассматривать человека как замкнутую систему, надо учитывать также, что он ест, пьет, дышит и удаляет отходы.

Энтропия человека возрастает, когда он поворачивает спонтанные явления, и «заводит» ту часть незаведенной Вселенной, которой может достичь. При этом, как я уже сказал, его энтропия возрастает на большую величину, чем то уменьшение, которое он вызывает. И это несмотря на то, что человек постоянно уменьшает свою энтропию, когда принимает пищу, пьет, дышит и удаляет отходы. (Уменьшение неполное, конечно; в конце концов все люди умирают, и неважно, насколько успешно они избегают несчастных случаев и болезней, потому что медленное возрастание энтропии ничем не может быть компенсировано.) Вместе с тем возрастание энтропии в пище, воде, воздухе и удаляемых частях системы опять-таки значительно больше, чем уменьшение энтропии в самом человеке. Для всей системы остается в силе возрастание энтропии.

Фактически не только люди, но и вся животная жизнь процветают и поддерживают свою энтропию на низком уровне за счет огромного возрастания энтропии своей пищи, которая в конечном счете состоит из растительности. Как же тогда растительный мир продолжает существовать? Он же не может долго существовать, если его энтропия так сильно и постоянно возрастает.

Благодаря процессу, известному как «фотосинтез», растительный мир производит пищу и кислород (ключевой элемент воздуха), которыми живет животный мир. Это происходит на протяжении миллиардов лет. Но растительный и животный мир, взятые в целом, тоже не замкнутая система. Энергию, которая управляет производством ими пищи и кислорода, растения получают из солнечного света.

Следовательно, именно солнечный свет делает возможной жизнь, и само Солнце должно быть включено в жизненную систему как ее часть, прежде чем к жизни могут быть применены законы термодинамики. Оказывается, энтропия Солнца постоянно возрастает на величину, намного превышающую любое уменьшение энтропии, которое может быть вызвано жизнью. Следовательно, суммарное изменение энтропии системы, включающей жизнь и Солнце, является резко выраженным и неизменным возрастанием. Огромное уменьшение энтропии, представляемое биологической эволюцией, сравнимо только с рябью на приливной волне возрастания энтропии, представляемой Солнцем, и сосредоточиться на ряби, не обращая внимания на приливную волну, – значит совершенно не понимать фактов термодинамики.

Люди, помимо пищи, которую они едят, и кислорода, которым дышат, используют и другие источники энергии. Они используют энергию ветра и текущей воды, но оба этих источника – это продукты Солнца, так как ветры возникают вследствие неравномерного нагревания Земли Солнцем, а текущая вода берет начало с испарения Солнцем океанской влаги.

Для получения энергии люди сжигают топливо. Топливом может быть древесина и другие растительные продукты, обязанные своей энергией солнечному свету. Это может быть жир или другие животные продукты, а животные питаются растениями. Это может быть каменный уголь, который является продуктом растений прошлых периодов. Это может быть нефть, являющаяся продуктом микроскопического животного мира прошлых периодов. Все эти виды топлива связаны с Солнцем.

На Земле существует энергия, которая исходит не от Солнца. Имеется энергия внутреннего тепла Земли, которая проявляется в горячих источниках, гейзерах, землетрясениях, вулканах, подвижках земной коры. Имеется энергия вращения Земли, о чем свидетельствуют приливы и отливы. Есть энергия неорганических химических реакций и радиоактивности.

Все эти источники энергии производят изменения, но в каждом случае энтропия возрастает. Радиоактивные материалы медленно распадаются, и, как только их тепло перестанет добавляться к внутреннему запасу тепла Земли, Земля начнет остывать. Приливо-отливное трение постепенно замедляет вращение Земли и так далее. Даже Солнце в конечном счете израсходует свой запас энергии для производства работы, так как и его энтропия возрастает. А биологическая эволюция последнего, более чем трехмиллиардного периода, представляющая столь замечательно уменьшающий энтропию процесс, действует на основе возрастания энтропии всех прочих источников энергии. Может показаться, что прекратить это возрастание невозможно.

Представляется, что в отдаленной перспективе ничто не может сдержать возрастающий уровень энтропии или предотвратить достижение им максимума, момента, когда наступит тепловая смерть Вселенной. И если бы люди могли избежать всех остальных катастроф и каким-то образом просуществовать еще триллионы лет, то неужели они смирятся и погибнут с тепловой смертью?

Исходя из сказанного мною, казалось бы, так оно и есть.

Движение наугад

Все же есть нечто сомнительное в этой картине неуклонного возрастания энтропии Вселенной; ведь то же самое происходило, если мы заглянем на какое-то время назад.

Поскольку энтропия Вселенной неуклонно возрастает, миллиард лет назад она была меньше, чем сейчас, два миллиарда лет назад – еще меньше и так далее. Если мы обратимся назад достаточно далеко, то в определенный момент энтропия Вселенной должна была быть нулевой.

Астрономы в настоящее время считают, что начало Вселенной отстоит от нас на 15 миллиардов лет. По первому началу термодинамики энергия Вселенной вечна, так что, когда мы говорим о начале Вселенной 15 миллиардов лет назад, мы не имеем в виду, что тогда была создана энергия (включая материю). Энергия всегда существовала. Все, что мы можем сказать, это то, что 15 миллиардов лет назад начали тикать и замедлять ход «часы-энтропия». Что же их «завело»?

Чтобы ответить на этот вопрос, давайте вернемся к двум моим примерам со спонтанным возрастанием энтропии – воде, перетекающей из полного сосуда в почти пустой, и теплу, перетекающему от горячего тела к холодному. Я подразумевал, что эти два примера строго аналогичны, что тепло такая же жидкость, как и вода, и ведет себя таким же образом. В этой аналогии все же есть проблемы. Конечно, легко увидеть, что происходит с водой в двух сосудах и как происходит. На воду действует гравитация. Вода, реагируя на неравенство гравитационных полей в двух сосудах, течет из полного сосуда в почти пустой. Когда в каждом сосуде вода достигает одинакового уровня, гравитационное поле в обоих сосудах уравнивается, и переток воды прекращается. Но что же это такое – то, что аналогично гравитации воздействует на тепло и перетягивает его из горячего тела в холодное? Прежде чем ответить на этот вопрос, нам надо выяснить, что такое тепло.

В восемнадцатом веке тепло, как и воду, считали жидкостью, только значительно более эфирной и, следовательно, способной просачиваться и выступать из мельчайших пор твердых тел подобно тому, как вода впитывается губкой и выжимается из нее.

В 1798 году американец британского происхождения, физик Бенджамин Томпсон граф Румфорд (1753—1814), изучая появление тепла от трения при сверлении орудийных стволов, предположил, что тепло представляет собой движение очень маленьких частиц. В 1803 году английский химик Джон Дальтон (1766—1844) предложил атомную теорию строения материи. Вся материя состоит из атомов, сказал он. С точки зрения Румфорда, именно движение этих атомов и является теплом.

 

Примерно в 1860 году шотландский математик Джеймс Кларк Максвелл (1831—1879) создал «кинетическую теорию газа», объясняя, как истолковать его поведение в свете атомно-молекулярного строения. Максвелл показал, что движение этих крошечных частиц, беспорядочно движущихся во всех направлениях и сталкивающихся друг с другом и со стенками вмещающего их сосуда, объясняет законы, управляющие поведением газа, которые были выработаны за два предшествовавших столетия.

В объеме любого газа атомы или молекулы двигаются с различными, широкого диапазона скоростями. Однако средняя скорость в горячем газе выше, чем в холодном. Собственно, то, что мы называем температурой, соответствует средней скорости частиц, из которых состоит газ. (Это верно и по отношению к жидкостям, и по отношению к твердым телам, только в жидкостях и твердых телах составляющие их частицы вибрируют, а не перемещаются полностью.) В целях упрощения аргумента, который следует ниже, предположим, что во всяком образце материи при данной температуре составляющие его частицы движутся (или вибрируют) со средней скоростью, характерной для этой температуры.

Представьте себе горячее тело (газообразное, жидкое или твердое), приведенное в контакт с холодным телом. Частицы на краю горячего тела будут сталкиваться с частицами на краю холодного тела. Быстрая частица горячего тела столкнется с медленной частицей холодного тела, затем эти две частицы отскочат друг от друга. Общий момент двух частиц остается одинаковым, но может произойти перенос момента с одной частицы на другую. Другими словами, две частицы могут расстаться с иными скоростями, чем те, с которыми они столкнулись.

Возможно, быстрая частица отдаст какую-то часть своего момента медленной частице, так что медленная частица, отскочив, будет двигаться быстрее. Возможно также, что медленная частица отдаст часть своего мо-мента быстрой частице и, отскочив, будет двигаться медленнее, а быстрая частица, отскочив, будет двигаться еще быстрее.

Простой случай определяет, в каком направлении произойдет перенос момента, но больше шансов на то, что момент перенесется с быстрой частицы на медленную, и быстрая частица отскочит медленнее, а медленная частица отскочит быстрее, чем до столкновения.

Почему? Да потому, что число путей, по которым момент может перейти от быстрой частицы к медленной, больше, чем число путей, по которым момент может перейти от медленной частицы к быстрой. Если все различные пути равновероятны, тогда больше шансов, что один из многих возможных переносов момента от быстрой частицы к медленной будет осуществлен скорее, чем один из немногих возможных переносов от медленной частицы к быстрой.

Чтобы лучше понять, почему это так, представьте себе пятьдесят фишек в коробке, все одинаковые, пронумерованные от 1 до 50. Возьмите одну наугад и представьте себе, что выбрали фишку 49. Это – большое число и представляет собой быстро движущуюся частицу. Положите фишку назад в коробку (которая моделирует столкновение) и выберите наугад еще одну фишку (номер которой моделирует скорость частицы). Вы могли бы выбрать опять 49 и отскочили бы с той же скоростью, с которой столкнулись. Или вы могли бы выбрать 50 и отскочить даже быстрее, чем столкнулись. Или вы могли бы выбрать любой номер от 1 до 48 – сорок восемь возможностей различного выбора, и в каждом из этих сорока восьми случаев вы бы отскочили медленнее, чем столкнулись.

Выбрав для начала номер 49, вы получили для отскакивания с более высокой скоростью лишь 1 шанс из 50. Шансов отскочить медленнее у вас оказалось 48 из 50.

Ситуация поменялась бы на обратную, если бы для начала вам достался номер 2. Он бы представлял собой очень малую скорость. Если бы вы бросили эту фишку назад и вытащили бы наугад другую, у вас был бы только 1 шанс из 50 выбрать номер 1 и отскочить медленнее, чем вы столкнулись, и в то же время у вас было бы 48 шансов из 50 выбрать любой номер от 3 до 50 и отскочить быстрее, чем вы столкнулись.

Если вы представите себе еще десять человек, каждый из которых вытаскивает фишку 49 из отдельной, предназначенной ему коробки, и бросает ее назад, чтобы снова попытать счастья, шансов, что все они вытащат 50 и что все отскочат быстрее, чем сталкивались, будет один из сотни миллионов миллиардов. С другой стороны, два шанса из трех, что каждый из Десяти в отдельности отскочит с более низкой скоростью.

И, наоборот, если бы те же самые десять человек для начала вытащили бы каждый по фишке с номером 2 и снова попытали бы счастья, ситуация поменялась бы на обратную.

Этим людям совершенно не обязательно выбирать одинаковые числа. Допустим, большое количество людей выбирают фишки, и у них оказываются совершенно разные номера, но среднее число довольно высокое. Если они вытащат еще по фишке, то гораздо более вероятно, что среднее число будет ниже, а не выше. Чем больше будет людей, тем более определенно, что среднее число будет ниже.

То же самое можно сказать и о людях, доставших фишки и обнаруживших, что у них довольно низкий средний номер. При повторной попытке они, скорее всего, вытащат номер выше среднего. Чем больше людей, тем больше вероятность, что среднее число будет выше.

В любых телах, достаточно больших, чтобы на них можно было производить опыты в лаборатории, количество атомов или молекул в каждом не десять, и не пятьдесят, и даже не миллион, а миллиарды триллионов. Если эти миллиарды триллионов частиц в горячем теле имеют высокую среднюю скорость и если миллиарды триллионов частиц в холодном теле имеют низкую скорость, тогда очень много шансов на то, что беспорядочные столкновения этой массы частиц уменьшат среднюю скорость частиц в горячем теле и увеличат среднюю скорость частиц в холодном теле.

Как только средняя скорость частиц станет одинаковой в обоих телах, тогда и момент, вероятно, передастся как в одном направлении, так и в другом. Одни частицы будут двигаться быстрее, другие – медленнее, но средняя скорость (а следовательно, и температура) станет одинаковой.

Это дает нам ответ на вопрос, почему тепло течет от горячего тела к холодному, и почему оба тела достигают одинаковой температуры и сохраняют ее значение. Это просто следствие закона вероятности, естественно вытекающее из слепых случайностей.

Вот, собственно, почему энтропия Вселенной неуклонно возрастает. Существует очень много путей, связанных с равномерным распределением энергии, намного больше тех, которые делают ее распределение более неравномерным, поэтому невероятно высоки шансы, что изменения будут идти в направлении возрастания энтропии, и путь к этому не что иное, как слепой случай.

Иными словами, второе начало термодинамики указывает не на то, что должно произойти, а только на то, что произойдет с подавляюще большой вероятностью. Здесь есть существенная разница. Если энтропия должна увеличиваться, то она никогда не уменьшится. Если энтропия лишь скорее всего увеличивается, то она скорее всего не уменьшится, но в конечном счете, если мы подождем достаточно долго, даже почти невероятное может произойти. Фактически, если мы подождем достаточно долго, оно должно произойти.

Представим себе Вселенную в состоянии тепловой смерти. Мы можем вообразить ее огромным, возможно, беспредельным трехмерным морем частиц, вовлеченных в бесконечную игру столкновений и отскакиваний отдельных частиц, одни из которых движутся быстрее, другие – медленнее, но с остающейся неизменной средней скоростью.

Время от времени в небольшой области соседствующих частиц развивается довольно высокая внутренняя скорость, в то же время в другой области на некотором расстоянии от первой устанавливается довольно низкая скорость. Общая средняя скорость во Вселенной не меняется, но у нас появилась область с низкой энтропией, и становится возможным некоторое небольшое количество работы, до тех пор пока эти области не уравняются, что произойдет через некоторое время.

То и дело на какое-то продолжительное время образуется большая неравномерность, произведенная этими случайными столкновениями, и опять, за еще более продолжительное время, еще большая неравномерность. Мы можем себе представить, что иногда, за триллион триллионов лет, образуется такая неравномерность с очень низкой энтропией в области размером со Вселенную. Для области размером со Вселенную с очень низкой энтропией, чтобы снова выравняться, требуется очень длительное время – триллион лет или более.

Возможно, подобное произошло с нами. В бесконечном море тепловой смерти благодаря действию слепого случая вдруг возникла Вселенная с низкой энтропией, а в процессе возрастания энтропии и выравнивания она обособилась в Галактики, звезды, планеты, породила жизнь и интеллект. И вот мы теперь интересуемся всем этим.

Таким образом и за окончательной катастрофой – тепловой смертью – может последовать возрождение, как и при сильнейших катастрофах, описанных в Откровении и скандинавских мифах.

Так как первое начало термодинамики представляется абсолютным, а второе начало термодинамики представляется только статистическим, есть вероятность существования бесконечного ряда вселенных, отделенных друг от друга воображаемыми эрами времени, только не найдется никого и ничего для измерения времени, и никаких способов в отсутствие возрастающей энтропии для его измерения, если бы даже и существовали необходимые приборы и пытливые умы. Следовательно, можно сказать: есть вероятность существования бесконечного ряда вселенных, отделенных друг от друга бесконечными интервалами.

А как на это проецируется человеческая история?

Предположим, что люди каким-то образом переживут все другие возможные катастрофы и что род человеческий проживет еще триллионы лет, прежде чем Вселенную постигнет тепловая смерть. Скорость возрастания энтропии по мере приближения к тепловой смерти неуклонно будет падать, но области со сравнительно низкой энтропией (области, малые по сравнению со Вселенной, но по человеческим масштабам очень большие) оставались бы то тут, то там.

Если мы допустим, что человеческая технология за триллион лет будет развиваться более или менее неуклонно, то люди должны оказаться способными воспользоваться этими областями низкой энтропии, обнаруживая и используя их, как мы сейчас обнаруживаем и используем месторождения золота. Эти области, продолжая истощаться, могли бы при этом поддерживать человечество миллиарды лет. Конечно, люди могли бы прекрасно находить новые области низкой энтропии, случайно образующиеся в море тепловой смерти, и использовать их, продолжая таким образом существовать вечно, хотя и в ограниченных условиях. Затем, наконец, шанс предоставит область низкой энтропии размером со Вселенную, и люди смогут повторить относительно безграничную экспансию.

А если взять последнюю крайность, люди могут поступить так, как я описал в моем научно-фантастическом рассказе «Последний вопрос», впервые опубликованном в 1956 году, и попытаться открыть способы вызвать массированное уменьшение энтропии, предотвращая таким образом тепловую смерть, либо обдуманно обновить Вселенную, если тепловая смерть уже на пороге.

Вопрос, однако, в том, будет ли человечество еще существовать в те времена, когда тепловая смерть станет проблемой, не сметет ли нас, на самом деле, какая-либо более ранняя катастрофа другого вида?

Вот вопрос, на который мы будем искать ответ в нашей книге.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29 
Рейтинг@Mail.ru