Результатом является «красный гигант». В небе сейчас существуют такие звезды. Звезда Бетельгейзе в Орионе – один пример, Антарес в Скорпионе – другой.
Рано или поздно все звезды доходят до стадии «красного гиганта», причем более массивные звезды совершают это раньше, менее массивные – позже.
Есть звезды настолько огромные, массивные и сверкающие, что они останутся в стадии стабильного синтеза водорода (обычно называемой «главной последовательностью») менее миллиона лет, а затем раздуются в красный гигант. Другие же звезды настолько маленькие, с небольшой массой и тусклые, что будут оставаться в главной последовательности до двухсот миллиардов лет, прежде чем станут красными гигантами.
Размер красных гигантов также зависит от массы. Чем массивнее звезда, тем до большего объема она раздувается. По-настоящему массивная звезда раздувалась бы до диаметра во много сотен раз больше нынешнего диаметра нашего Солнца, в то время как маленькие звезды раздувались бы до диаметра только в несколько раз больше его диаметра.
Где же на этой шкале место нашему Солнцу? Солнце – это звезда средней массы и, значит, имеет период жизни в главной последовательности средней продолжительности. Оно в конечном счете станет красным гигантом среднего размера. Для звезды с массой Солнца общая длительность времени, которое она проведет в главной последовательности, спокойно и непрерывно синтезируя водород, составляет примерно 13 миллиардов лет. Солнце уже находится в главной последовательности почти 5 миллиардов лет, и это означает, что в его распоряжении осталось немного более 8 миллиардов лет. В течение всего этого времени Солнце (как и любая звезда) медленно разогревается. В последний миллиард лет его главной последовательности разогрев Достигнет такого значения, что Земля окажется слишком горячей для жизни. Следовательно, мы можем заглядывать вперед самое большее на 7 миллиардов лет, в течение которых будет существовать достойное Сатурналий, дающее жизнь Солнце.
Несмотря на то, что 7 миллиардов лет совсем не короткий период, это гораздо более короткий период, чем тот, который может пройти до наступления катастрофы первого класса.
Время, когда Солнце начнет переходить в стадию красного гиганта и жизнь на Земле станет невозможной, может спокойно продлиться почти триллион лет до следующего космического яйца. Так что пребывание Солнца в главной последовательности составляет менее одного процента жизни Вселенной – от космического яйца до космического яйца.
К тому времени, когда Земля больше не будет подходящим местом для жизни (после того как она прослужила в этом качестве в продолжение примерно 10 миллиардов лет), Вселенная в целом не будет намного старее, чем сейчас, и много будущих поколений звезд и планет, еще не родившихся, сыграют свою роль в космической драме.
Если предположить, что человечество все еще будет существовать спустя 7 миллиардов лет от нашего времени (отнюдь не плохое предположение, конечно), то оно вполне может постараться избежать этой чисто локальной катастрофы и продолжить оккупацию невозмутимо процветающей Вселенной. Избежать этого будет не так-то просто, ведь, безусловно, на Земле нигде не будет убежища. Когда Солнце достигнет пика своего красного гигантизма, его диаметр станет более чем в 100 раз больше его теперешнего диаметра, так что и Меркурий, и Венера будут поглощены его расширившейся материей. Земля может остаться не поглощенной массой Солнца, но даже если она избежит этого, то вполне вероятно, что огромное тепло, которое она получит от гигантского Солнца, испарит ее.
Однако не все потеряно. Во всяком случае налицо заблаговременное предупреждение. Если человечество переживет эти миллиарды лет, в течение этих миллиардов лет оно будет знать, что ему надо как-то планировать спасение. Поскольку технологическая компетенция человечества возрастает (учитывая, насколько далеко оно продвинулось за последние двести лет, можно представить себе, как далеко оно может продвинуться за 7 миллиардов лет), спасение может стать возможным.
Когда Солнце расширится, внутренняя солнечная система будет опустошена, но гигантские планеты внешней солнечной системы вместе с их спутниками пострадают меньше. На самом деле, с человеческой точки зрения, они даже могут испытать изменения к лучшему. Человечество может оказаться в состоянии затратить время, приложить свои силы и умение, чтобы переустроить некоторые из крупных спутников Юпитера, Сатурна, Урана и Нептуна и сделать их подходящими для жизни. (Этот процесс иногда называют «терраобразованием».) Будет масса времени для расселения. За время, когда расширение Солнца начнет ускоряться, и Земля начнет проходить финальную выпечку в необратимую пустыню, человечество может прижиться на дюжине внешних миров Солнечной системы, на таких спутниках Юпитера, как Ганимед и Каллисто, и, возможно, на спутниках самого Плутона. Там люди могут быть согреты большим красным Солнцем, но не перегреты, конечно. Действительно, с Плутона солнечный красный гигант не будет выглядеть намного большим, чем сейчас Солнце на небе Земли.
Кроме того, люди, вероятно, смогут разместить в космосе искусственные структуры, создать на них экологически завершенные самостоятельные поселения, способные вместить от десяти тысяч до десяти миллионов человек. И это не обязательно будет результатом деятельности миллиардов лет, поскольку налицо все признаки того, что мы располагаем технологическими воз можностями строить такие поселения уже сейчас и через какие-нибудь несколько веков могли бы заполнить ими небо. На пути стоят только политические, экономические и психологические факторы (но это достаточно большое «только»).
Таким образом, катастрофы можно будет избежать, и человечество сможет продолжать жить в новых мирах как естественных, так и искусственных (К 1998 году у некоторых звезд обнаружено существование планетарных систем. В определенных кругах это вызвало новые толки о возможности существования жизни на этих планетах, внеземных цивилизаций. Все это, конечно, очень проблематично, но если уж говорить о расселении человечества в космосе, то почему бы наряду с иными космическими поселениями не принимать в расчет подобные планеты?).
Во всяком случае до поры до времени.
– Когда водородный синтез больше не является источником звездной энергии, звезда может существовать как большой объект в продолжение только сравнительно короткого дополнительного времени. Энергия, получаемая посредством синтеза гелия в более тяжелые ядра, а от них к еще более тяжелым, достигает в общей сложности не более 5 процентов полученной от водородного синтеза. Способность красного гиганта сохраняться расширенным, противодействуя силе гравитации, поэтому подрывается. Звезда начинает гибнуть.
Время жизни красного гиганта и природа его гибели зависят от массы звезды. Чем больше масса, тем быстрее красный гигант использует путем синтеза последние остатки имеющегося у него запаса энергии, тем короче будет жизнь этой звезды. Кроме того, чем больше масса, тем больше и интенсивнее гравитационное поле и, следовательно, быстрее происходит сжатие.
Когда звезда сжимается, в ее внешних слоях, где ядерные реакции не происходили и где водород, следовательно, остался нетронутым, сохранилось еще значительное его количество. Сжатие нагревает всю звезду (теперь не ядерная, а гравитационная энергия преобразуется в тепло по Гельмгольцу), и во внешних слоях начинается водородный синтез. Процесс сжатия таким образом совпадает с ярким блеском внешних слоев.
Чем массивнее звезда, тем быстрее сжатие, тем более интенсивно нагревание внешних слоев, тем больше имеется водорода для синтеза и тем быстрее он синтезируется – и тем более разительны результаты. Другими словами, маленькая звезда сжималась бы спокойно, а большая, подвергаясь достаточно сильному синтезу в своих наиболее внешних частях, отправит немалую долю своего внешнего слоя в космос, делая это более или менее взрывообразно, оставляя только внутренние сферы для сжатия.
Чем массивнее звезда, тем более резок этот «выпуск пара». Если звезда достаточно массивна, стадия красного гиганта завершается колоссальным взрывом, в течение которого звезда может ненадолго сверкнуть светом, во много миллиардов раз более ярким, чем свет обычной звезды, короткой вспышкой, равной свету целой галактики невзрывающихся звезд. Это так называемая «сверхновая». В ходе такого взрыва до 95 процентов вещества звезды может вырваться в открытый космос. Остальное будет сжиматься.
Что же произойдет со сжимающейся звездой, которая не взрывается, или с той частью взорвавшейся звезды, которая осталась и сжимается? Если это маленькая звезда, которая так и не нагреется в ходе сжатия достаточно для того, чтобы взорваться, она будет сжиматься До тех пор, пока не достигнет планетарного размера, причем сохранив всю или почти всю первоначальную массу. Ее накаленная добела, ярко сверкающая поверхность окажется значительно горячее, чем нынешняя поверхность нашего Солнца. Тем не менее на большом расстоянии очертания такой звезды будут неотчетливы, потому что свет излучается очень маленькой поверхностью и в целом не достигает достаточного количества. Такая звезда называется «белым карликом».
Почему же белый карлик не продолжает сжиматься? В белом карлике атомы расщеплены, и электроны, уже не образуя оболочек вокруг центральных атомных ядер, являются своего рода «электронным газом», который способен сжаться только до определенного уровня. Он сохраняет вещество звезды расширенным по крайней мере до планетарного объема и может сохранять такой объем неопределенное время.
Белый карлик очень медленно охлаждается и заканчивает свою жизнь слишком холодным для того, чтобы излучать свет, он становится «черным карликом».
Когда звезда сжимается до белого карлика, она может, если она не очень маленькая, расстаться с внешними слоями своего красного гиганта умеренным взрывом при незначительном сжатии, теряя таким образом пятую часть своей общей массы. Наблюдаемый с расстояния, такой белый карлик представляется окруженным светящимся туманом, словно кольцом дыма. Такой объект называется «планетарной туманностью», в небе их наблюдается несколько. Постепенно облако газа растекается во всех направлениях, становится расплывчатым и растворяется в разреженной материи космического пространства.
Когда звезда достаточно массивна, чтобы сильно взорваться в процессе сжатия, ее остаток, продолжающий сжиматься, может быть все еще слишком массивен (даже после потери значительной массы), чтобы сразу превратиться в белого карлика. Чем массивнее сжимающийся остаток, тем плотнее сжимается самим собой электронный газ и тем меньше белый карлик.
Наконец, если имеется достаточная масса, электронный газ может не выдержать своего собственного давления. Электроны тогда вжимаются в протоны, присутствующие в ядрах, которые блуждают в электронном газе, и образуются нейтроны. Они добавляются к нейтронам, которые уже существуют в ядрах, и тогда звезда состоит в основном из нейтронов. Звезда сжимается, пока нейтроны не придут в контакт. Результатом является «нейтронная звезда», которая величиной всего с астероид примерно десять-двадцать километров в поперечнике, но сохраняет массу полноразмерной звезды.
Если сжимающийся остаток звезды еще более массивен, даже нейтроны не способны выдержать силу гравитации. Они будут разрушены, а остаток сожмется в черную дыру.
Как же сложится судьба Солнца, после того как оно достигнет стадии красного гиганта?
Оно может остаться красным гигантом на несколько сотен миллионов лет – очень небольшой период в масштабе звездной жизни, но дающий возможность для развития цивилизации в космических поселениях на терра-образованиях во внешних мирах, – но затем Солнце станет сжиматься. Оно не будет достаточно большим для сильного взрыва, так что не будет опасности, что через день или через неделю неистовства Солнечная система очистится от жизни вплоть до орбиты Плутона и даже за ее пределами. Вовсе нет. Солнце будет просто сжиматься, оставляя около себя, самое большее, тонкую пелену своего внешнего слоя, превращающегося в планетарную туманность.
Облако вещества будет дрейфовать мимо далеких планет, на которых, как мы представили себе, в те далекие будущие времена разместятся потомки человечества. Облако не будет представлять для них особой опасности. Начнем с того, что это будет очень разреженный газ, и если, – а возможно, так оно и будет, – поселения будут расположены, так сказать, под землей или в пределах городов под куполами, то, может быть, и вообще не будет никакого вредного воздействия.
Проблемой будет сжимающееся Солнце. Как только Солнце сожмется до белого карлика (оно недостаточно массивно, чтобы образовать нейтронную звезду и, тем более, черную дыру), оно станет на небе не больше крошечной светящейся точки. Со спутников Юпитера, если люди сумеют обосноваться настолько близко к Солнцу на его стадии красного гиганта, его яркость составит лишь 1/4000 яркости Солнца, как мы его видим сейчас с Земли, и оно будет поставлять такую же часть энергии.
Если поселения людей во внешней Солнечной системе окажутся зависимыми от энергии Солнца, то, как только Солнце станет белым карликом, они не смогут получить ее в достаточном количестве. Им надо будет продвинуться к нему значительно ближе, но они не смогут этого сделать, если для этой цели им потребуется планета, ведь планеты Солнечной системы окажутся разрушенными или уничтоженными в предыдущей фазе существования Солнца, фазе красного гиганта. Служить прибежищем человечеству с наступлением этого времени смогут только искусственные космические поселения.
Когда такие поселения будут созданы впервые (может быть, в наступающем веке), они будут двигаться по орбитам вокруг Земли, используя солнечную радиацию в качестве источника энергии, а Луну – как источник большинства сырьевых материалов. Некоторые легкие элементы, которых нет в ощутимых количествах на Луне, – углерод, азот и водород – нужно будет доставлять с Земли.
Со временем будет предусмотрено создание таких космических поселений в астероидном поясе, где проще добыть эти жизненно необходимые легкие элементы, не попадая в опасную зависимость от Земли.
Может быть, когда космические поселения станут более самостоятельными и более подвижными и когда человечество яснее представит себе опасность оставаться привязанным к планетарным поверхностям ввиду перипетий, которые охватят Солнце в его последние дни, именно эти поселения могут стать предпочтительным местом проживания человечества. Вполне вероятно, что задолго до того, как встанет вопрос о том, что Солнце принесет нам какое-либо несчастье, большая часть человечества или даже все оно будет абсолютно свободно от поверхностей естественных планет и обоснуется в космосе – в мирах и окружающих средах по своему собственному выбору.
Может быть, тогда не встанет вопрос о терра-образованиях во внешних мирах для того, чтобы пережить красный гигантизм Солнца. А по мере того как Солнце будет становиться горячее, окажется достаточным соответственно приспособить орбиты космических поселений и медленно дрейфовать подальше от раздувающегося Солнца.
Это нетрудно себе представить. Орбиту такой планеты, как Земля, изменить почти невозможно, потому что у нее огромная масса и, следовательно, большая инерция и угловой момент, и найти энергию, достаточную для значительного изменения орбиты, практически невозможно. А масса Земле необходима, так как ей нужно сильное гравитационное поле, чтобы удерживать океан и атмосферу на своей поверхности и делать таким образом возможной жизнь.
В космическом поселении общая масса незначительна, по сравнению с Землей, поскольку гравитация не используется для удержания воды, воздуха и всего остального. Все это удерживается, потому что механически ограничено внешней стеной, а эффект гравитации на внутреннюю поверхность этой стены может создаваться центробежным эффектом, который создается вращением.
Таким образом, космическое поселение может изменять свою орбиту, затрачивая умеренное количество энергии, и оно может быть отодвинуто от Солнца, когда то станет нагреваться и расширяться. Теоретически оно может и приблизиться к Солнцу, когда то будет сжиматься и давать меньше энергии. Сжатие, однако, будет гораздо более быстрым, чем предшествующее расширение. Более того, все космические поселения, которые могли бы существовать на стадии красного гигантизма Солнца и двигаться к соседству с белым карликом, будут, возможно, сокращаться в объем меньший, чем бы они хотели. За миллиарды лет они могут привыкнуть к неограниченным пространствам большой Солнечной системы.
Но тогда вполне можно предположить, что задолго до наступления стадии белого карлика космические поселенцы создадут работающие на водородном синтезе силовые установки и станут независимыми от Солнца. В таком случае они могут сделать иной выбор – навсегда покинуть Солнечную систему.
Если значительное количество космических поселений покинет Солнечную систему, становясь самодвижущимися «свободными планетами», то человечество сможет освободиться от угрозы катастроф второго класса и продолжать жить (и неограниченно распространяться по Вселенной), пока не наступит стадия сжатия Вселенной в космическое яйцо.
Главные доводы, почему смерть Солнца (смерть в том смысле, что оно станет совершенно другим объектом, совершенно не похожим на известное нам Солнце) не обязательно является катастрофой для рода человеческого, таковы: неизбежное расширение и последующее сжатие Солнца наступит в невообразимо далеком будущем, и люди (полагаем, они будут существовать), несомненно, разработают технологические средства для спасения; изменения надежно предсказуемы и невозможно быть застигнутыми врасплох.
А сейчас нам предстоит обсудить такие катастрофы второго класса (связанные с Солнцем или с расширяющейся звездой), которые могут застать нас врасплох, и, что еще хуже, могут произойти в ближайшем будущем, до того как у нас появится возможность разработать необходимые технологические средства защиты.
Существуют звезды, которые претерпевают катастрофические изменения, скажем, вдруг становятся более яркими или из невидимых – видимыми, а потом снова тускнеют, иногда до невидимости. Это «нова» (от латинского слова «новый»), или по-русски новые, названные так, поскольку из-за отсутствия телескопов они казались астрономам древности новыми звездами. Первые из них были упомянуты греческим астрономом Гиппархом (190—120 до н. э.).
Необычно яркие новые являются «сверхновыми», о которых мы уже упоминали, название это для них впервые применил американец швейцарского происхождения астроном Фриц Цвики (1898—1974). Первой, подвергшейся подробному обсуждению европейских астрономов, была сверхновая 1572 года.
Предположим, например, что совсем не Солнце приближается к концу своей жизни в главной последовательности, а какая-то другая звезда. Наше Солнце еще в начале среднего возраста, но какая-нибудь находящаяся поблизости звезда может оказаться уже старой и на пороге смерти. Не может ли эта сверхновая неожиданно вспыхнуть, застать нас врасплох и воздействовать на нас катастрофически?
Сверхновые редки, только одна звезда из сотни способна взорваться, как сверхновая, и лишь немногие из них находятся в финальной стадии своей жизни, а из последних еще меньшее число настолько близки, чтобы мы могли их увидеть как необычно яркие звезды. (До изобретения телескопа для обнаружения наблюдателем необычно яркой звезды нужно было, чтобы она появилась там, где до того никакой звезды не было.) И все же сверхновые, конечно, могут появиться, что в прошлом и происходило.
Одна замечательная сверхновая, которая появилась на небе в исторические времена, вспыхнула 4 июля 1054 года – несомненно, наиболее внушительный из всех фейерверков на празднике Чудесного Четвертого1, хотя до знаменательного события оставалось еще 722 года. Сверхновая 1054 наблюдалась не европейскими или арабскими астрономами, а китайскими (Астрономия в Европе была в то время в упадке, а те, кто все-таки наблюдал за небом, возможно, были слишком убеждены в греческой доктрине неизменности небесного свода, чтобы поверить собственным глазам).
Сверхновая появилась, как новая звезда, сверкающая в созвездии Тельца с таким неистовством, что превысила по яркости Венеру. На небе не было ничего яр-че новой звезды, за исключением Солнца и Луны. Она была настолько яркой, что ее можно было видеть при дневном свете, и не короткое время, а день за днем в течение трех недель. Затем она стала постепенно пропадать, но лишь почти два года спустя она стала настолько слабой, что ее уже было не различить невооруженным глазом.
На месте, где некогда китайские астрономы заметили это экстраординарное явление, сейчас существует турбулентное облако газа под названием Туманность Краба, в диаметре оно составляет 13 световых лет. Шведский астроном Кнут Лундмарк в 1921 году высказал гипотезу, что это сохранившийся остаток сверхновой 1054. Газы Туманности Краба все еще продолжают расширяться со скоростью, пересчет которой показывает, что взрыв, явившийся причиной их движения, имел место как раз примерно в то самое время, когда появилась новая звезда.
Яркость, подобная яркости сверхновой 1054, может доставить на Землю не более чем стомиллионную долю света Солнца, а этого вряд ли достаточно, чтобы каким-либо образом подействовать на людей, тем более что этот уровень продержался всего несколько недель.
Однако важна не только сумма излучения, но и его состав. Наше Солнце, например, доставляет некоторую очень активную радиацию в виде рентгеновских лучей, а сверхновая имеет гораздо больший процент своей лучистой энергии в рентгеновском спектре. То же самое относится и к космическим лучам, еще одному виду радиации высокой энергии, к которым мы вернемся позднее.
Короче, хотя свет сверхновой 1054 и был настолько слабым по сравнению с Солнцем, по мощности нанесения удара Земле рентгеновскими и космическими лучами он может соперничать с Солнцем, по крайней мере в первые недели взрыва.
Но даже в этом случае опасности не было. Хотя, как мы увидим, приток энергетической радиации может оказать вредное воздействие на жизнь, наша атмосфера защищает нас от чрезмерного ее количества, и ни сверхновая 1054, ни само Солнце не обязательно опасны для нас под защищающим одеялом нашего воздуха. И это не просто предположение. Дело в том, что Земля пронесла свой груз жизни через тот критический 1054 год без каких-либо заметных вредных последствий.
Конечно, Туманность Краба не очень близка к нам. Она находится на расстоянии примерно 6500 световых лет (Представьте себе неистовость взрыва, который мог с такого расстояния создать свет ярче, чем свет Венеры). Еще более яркая сверхновая появилась в 1006 году. По отчетам китайских наблюдателей может создаться впечатление, что она была в сотни раз ярче Венеры и составляла ощутимую часть яркости полной Луны. На нее даже существуют ссылки в нескольких европейских хрониках. Она находилась на расстоянии всего 4000 световых лет от нас.
С 1054 года было только две видимых сверхновых на нашем небе. Одна сверхновая появилась в Кассиопее в 1572 году и была почти такой же яркой, как сверхновая 1054, но находилась дальше. Наконец, была сверхновая в Змее в 1604 году, которая была значительно менее яркой, чем любая из трех, упомянутых мною, и значительно более удаленной (Для астрономов довольно огорчительно, что две сверхновые, видимые невооруженным глазом, появились всего за тридцать два года до изобретения телескопа, и с тех пор больше не было ни одной такой. Ни одной! Самая яркая сверхновая после 1604 года была сверхновая в Галактике Андромеды. Она была какое-то время почти такой яркой, что ее можно было бы увидеть невооруженным глазом, однако расстояние до Галактики Андромеды огромно.).
Некоторые из сверхновых могли иметь место в нашей Галактике и после 1604 года, но оставались невидимыми, скрытые обширными облаками пыли и газа, которые переполняют окраины Галактики. Мы можем, однако, обнаружить их остатки в виде колец пыли и газа, как в Туманности Краба, но более разреженных и широких, что может быть связано со сверхновыми, которые взорвались так, что их не увидели либо потому, что они были чем-то скрыты, либо потому, что они были слишком давно.
Несколько струй газа, отмеченных микроволновой эмиссией и названных Кассиопея А, возможно, свидетельствуют о сверхновой, которая взорвалась в конце семнадцатого века. Если так, то она самая недавняя известная нам сверхновая, которая взорвалась в нашей Галактике, хотя ее тогда и не было видно. Этот взрыв был, может быть, более впечатляющим, чем сверхновая 1054, если рассматривать их с одного расстояния, о чем свидетельствует радиация, излучаемая сейчас остатками. Однако это случилось на расстоянии 10 000 световых лет, так что эта сверхновая, вероятно, не была намного ярче, чем предыдущая сверхновая – если ее можно было бы видеть.
Более зрелищная сверхновая, из всех известных в исторические времена, полыхнула на небе примерно 11 000 лет назад, когда в некоторых частях мира люди начинали приобщаться к сельскому хозяйству. От этой сверхновой осталась оболочка газа в созвездии Паруса, впервые обнаруженная в 1939 году американцем русского происхождения Отто Струве (1897—1963). Эта оболочка называется Туманность Гама (по имени австралийского астронома Колина С. Гама, который первым изучил ее в деталях в 50-е годы).
Центр оболочки находится на расстоянии лишь 1500 световых лет от нас, что делает ее ближайшей к нам взорвавшейся сверхновой. Один из краев ее продолжающей расширяться оболочки находится на расстоянии 300 световых лет. Она может достигнуть нас приблизительно через 4000 лет. Но это настолько разреженное вещество, что оно не должно воздействовать на нас сколько-нибудь значительным образом.
Когда эта близко расположенная сверхновая взорвалась, она на своем пике была несколько дней такой же яркой, как полная Луна, и можно позавидовать древним людям, которые были свидетелями такого великолепного зрелища. Но это, кажется, не причинило вреда жизни на Земле.
Все же сверхновая Паруса была от нас на расстоянии 1500 световых лет. Существуют звезды, которые более чем в сто раз ближе к нам. Что если звезда, близкая к нам, неожиданно станет сверхновой? Предположим, что одна из звезд, например Альфа Центавра, находящаяся от нас на расстоянии только 4,4 световых года, станет сверхновой. Что тогда? Если яркая сверхновая засверкает в 4,4 световых годах от нас с той же яркостью, которой вообще достигает сверхновая, она по яркости и по теплу составит примерно 1/6 Солнца и будет пылать в течение нескольких недель, она поднимет тепловую волну, какой Земля еще никогда не испытывала[6].
Предположим, сверхновая вспыхнет на Рождество, как самая яркая звезда Вифлеема. В это время года в Южном полушарии будет летнее солнцестояние, и Антарктика будет постоянно под солнечными лучами. Но можно быть уверенным, что солнечный свет будет довольно слабым, потому что в Антарктике даже во время солнцестояния Солнце стоит очень низко над горизонтом. Сверхновая Альфа Центавра будет, однако, высоко в небе и добавит свое весьма существенное тепло к теплу Солнца. Ледовая шапка Антарктики получит тепловой удар. Таяние станет беспрецедентно сильным, уровень моря поднимется и принесет бедствия для многих частей мира. Уровень моря еще долго останется высоким и после того, как сверхновая охладится. Для восстановления равновесия понадобятся годы.
Вдобавок Земля будет купаться в рентгеновских и космических лучах, имеющих интенсивность, которой она, может быть, никогда прежде не знала, а спустя несколько лет ее окутает облако пыли и газа, причем плотнее, чем любое облако, с которым она когда-либо сталкивалась. Позднее мы обсудим, какой эффект дали бы эти события, но они, несомненно, были бы бедственны.
Спасительная милость состоит в том, что этого не произойдет. Конечно, этого случиться не может. Наиболее яркая из звезд двойной звезды Альфа Центавра по массе почти равна массе Солнца, и она не может взорваться, как гигантская сверхновая или даже как любого вида сверхновая, как не может и наше Солнце. Самое большое, на что способна Альфа Центавра, это превратиться в красный гигант, внезапно избавившись от своих наиболее внешних слоев, которые станут планетарной туманностью, а затем сжаться и превратиться в белого карлика.
Мы не знаем, когда это случится, потому что не знаем, сколько ей лет, но это не может случиться до того, как она превратится в красный гигант. Но даже если это превращение начнется завтра, она, вероятно, останется в стадии красного гиганта на одну-другую сотню миллионов лет.
Каково же тогда самое малое расстояние, на котором мы могли бы найти сверхновую?
Начнем с того, что нам надо искать звезду массивную, такую, которая как минимум в 1,4 раза массивнее Солнца, или лучше такую, которая массивнее Солнца значительно более этой величины, если мы хотим видеть по-настоящему большое шоу. Таких массивных звезд мало, и это главная причина, почему сверхновые не более часты, чем они появляются. (Считается, что в галактике размером с нашу одна сверхновая появляется в среднем каждые 150 лет, и, конечно, немногие из них могут находиться даже умеренно близко к нам.) Самая близкая массивная звезда – Сириус, которая в 2,1 раза превосходит по массе наше Солнце и находится на расстоянии 8,63 световых лет, то есть почти в два раза дальше от нас, чем Альфа Центавра. Даже с этой массой Сириус не способен произвести по-настоящему зрелищную сверхновую. Да, он взорвется однажды, но это будет скорее выстрел из ружья, чем пушечный залп. Кроме того, Сириус находится в главной последовательности. Из-за его массы общий период его жизни в главной последовательности составляет только 500 миллионов лет, и часть этого времени, очевидно, истрачена. То, что осталось, плюс стадия красного гиганта, означает, что взрыв отодвигается на несколько сотен миллионов лет.
Тогда следует поинтересоваться, какая же из самых близких массивных звезд уже находится в стадии красного гиганта?
Самый близкий красный гигант – это Шеат в созвездии Пегаса. Она находится только в 160 световых годах, ее диаметр примерно в 110 раз больше диаметра Солнца. Мы не знаем ее массы, но если она достигла такого размера, потому что расширилась, то ее масса очень ненамного больше массы Солнца и она не перейдет в стадию сверхновой. С другой стороны, если она массивнее Солнца и все еще продолжает расширяться, то ее стадия сверхновой еще далека.