bannerbannerbanner
Ген. Очень личная история

Сиддхартха Мукерджи
Ген. Очень личная история

Полная версия

«Огромный пробел»[125]

Интересно, мистер Дарвин когда-нибудь брал на себя труд подумать, как быстро истощится любой изначальный запас <…> геммул. <…> Мне кажется, если бы его хоть мимолетно посетила эта мысль, он бы точно оставил свои фантазии о «пангенезисе».

Александр Вилфорд Холл, 1880[126]

О научной смелости Дарвина говорит то, что он не боялся предполагать происхождение человека от обезьяноподобных предков. О его научной добросовестности говорит то, что гораздо больше неприятия его теории обществом он боялся нарушить целостность ее внутренней логики. Оставалось заполнить один особенно «огромный пробел»: наследственность.

Дарвин понимал, что теория наследственности не уступает по значимости теории эволюции; более того, она имеет решающее значение. Чтобы на Галапагосских островах в результате естественного отбора мог появиться вьюрок-дубонос, должны выполняться два, казалось бы, противоречивых условия. Во-первых, короткоклювый «нормальный» вьюрок должен быть способен время от времени производить потомков с большим клювом – монстров или уродцев (Дарвин называл таких особей «спортами» – выразительным словом, намекающим на бесконечные капризы природы, на ее жажду развлечений. Главным двигателем эволюции, по мнению Дарвина, было не стремление природы к определенной цели, а ее чувство юмора). Во-вторых, у вьюрка с большим клювом должна быть возможность передать свой признак потомству, зафиксировать свое отклонение в будущих поколениях. Если одно из условий не выполняется – в ходе размножения не появляется новых вариантов или их отклонения не наследуются, – природа вязнет в болоте, шестеренки эволюции останавливаются. Чтобы теория Дарвина работала, наследственность должна быть одновременно и консервативной, и допускающей изменения; ей должны быть свойственны и стабильность, и мутации.

Дарвин постоянно задавался вопросом, что за механизм мог бы воплотить эти противоположные свойства. В те времена считалось, что наиболее вероятный механизм наследственности описывает выстроенная в XVIII веке теория французского биолога Жан-Батиста Ламарка. По мнению Ламарка, наследственные признаки[127] передаются от родителей как сообщение или рассказ – то есть потомство получает инструкцию. Ламарк считал, что животные приспосабливаются к среде путем усиления или ослабления определенных черт, и «степень выраженности признака пропорциональна[128] времени его использования». Вьюрок, вынужденный питаться твердыми зернами, приспосабливается, делая свой клюв мощнее. На такой диете клюв вьюрка постепенно станет тверже и примет форму пассатижей. Это приобретенное свойство в виде инструкции перейдет его потомкам, и их клювы благодаря родителю тоже будут твердыми, уже подготовленными к расклевыванию зерен. По той же логике антилопы, объедающие высокие деревья, однажды понимают, что для доступа к верхней листве им нужно растянуть шеи. За счет «использования и неиспользования», по выражению Ламарка, шеи антилоп удлинятся, а потомство, унаследовавшее эту черту, даст начало жирафам (обратите внимание на сходство рассуждений Ламарка – о том, что в сперму от тела переходят «инструкции», – с пифагоровой концепцией человеческой наследственности, согласно которой сперма собирает сообщения от всех органов).

Непосредственная привлекательность концепции Ламарка заключалась в том, что она предлагала обнадеживающую историю прогрессивного развития: все животные постепенно приспосабливаются к своей среде, медленно, но верно взбираясь по эволюционной лестнице вверх, к совершенству. Эволюция и адаптация спаяны в единый механизм: адаптация и есть эволюция. Эта схема не только была интуитивно понятной, но и хорошо вписывалась в религиозную парадигму – по крайней мере, достаточно хорошо для биологической теории. Пусть изначально и созданные богом, животные все же имеют возможность совершенствовать свою форму, приспосабливаясь к изменчивому миру природы. На идею Великой Цепи Бытия[129] теория не посягала. И даже больше – укрепляла ее позиции, ведь в конце длинного пути адаптивной эволюции стояло самое приспособленное, идеально распрямленное, совершеннейшее из млекопитающих – человек.

Идеи Дарвина явно шли вразрез с эволюционными представлениями Ламарка. Жирафы не произошли от деформированных постоянной тягой к недоступной листве антилоп. Они появились потому, что антилопа-предок породила вариант антилопы с длинной шеей, и этот вариант потом постепенно отбирался под действием какой-то естественной силы вроде голода. Но Дарвин продолжал возвращаться к механизму наследственности: как появилась первая антилопа с длинной шеей?

Дарвин пытался придумать теорию наследственности, совместимую с идеей эволюции. Но здесь дала о себе знать слабая сторона Дарвина: он не был особо одаренным экспериментатором. Мендель, как мы увидим, был прирожденным садоводом, ему на интуитивном уровне удавалось скрещивать растения, считать семена, выделять признаки. Дарвин же был «садовым копателем»: классифицировал растения, сортировал образцы, очерчивал таксоны. Коньком Менделя был эксперимент: манипуляции с организмами, перекрестное опыление тщательно отобранных вариантов, проверка гипотез. Коньком Дарвина была естественная история – реконструкция прошлого планеты путем наблюдения за природой. Мендель, монах, выделял детали целого и виртуозно работал с дробностями; Дарвин, чуть не ставший когда-то священником, напротив, синтезировал из деталей целое.

Но наблюдать за природой, как оказалось, совсем не то же самое, что экспериментировать с ней. Как ни посмотри, ничто в мире природы не намекает на существование генов; напротив, чтобы дойти до идеи дискретных частиц наследственности, нужно совершить довольно причудливые экспериментальные манипуляции. Не имея возможности подобраться к теории наследственности экспериментальным путем, Дарвин был вынужден опираться исключительно на теоретические построения. Он бился над концепцией около двух лет и чуть не довел себя до нервного расстройства[130], когда наконец решил, что наткнулся на подходящую идею. Дарвин предположил, что клетки всех живых организмов производят мелкие частицы, в которых заключена наследственная информация. Он назвал их геммулами[131]. Геммулы циркулируют по телам родителей. Когда животное или растение достигает репродуктивного возраста, информация в геммулах переносится в половые клетки (сперматозоиды и яйцеклетки). Соответственно, информация о «состоянии» тела переходит от родителей к потомству во время зачатия. Как и у Пифагора, в модели Дарвина каждый организм несет информацию о строении органов и тканей в миниатюрных частицах, однако дарвиновская информационная система децентрализована: новый организм строится по результатам «парламентского голосования». Геммулы из руки содержат инструкцию по формированию новой руки, геммулы из уха кодируют построение нового уха.

 

Как геммулярные сообщения от матери и отца влияют на развивающийся плод? Здесь Дарвин вернулся к старой идее: инструкции от женщины и мужчины просто встречаются в эмбрионе и смешиваются, как краски. Идея смешения наследственного материала[132] большинству биологов была знакома: она лишь переформулировала мысль Аристотеля о смешении мужских и женских черт. Казалось, Дарвину чудом удалось объединить противоположные полюса биологии. В новой теории наследственности он сплавил пифагорова гомункула (геммулы) с аристотелевскими сообщениями и смешением признаков.

Дарвин назвал свою теорию «пангенезис»[133] – «зарождение от всего» (так как все органы формируют геммулы). В 1867 году, примерно через 10 лет после выхода «Происхождения видов…», Дарвин заканчивал новую рукопись – «Изменение животных и растений в домашнем состоянии»[134], в которой подробно излагал свой взгляд на наследственность. «Это поспешно выстроенная, сырая гипотеза[135], – признавался Дарвин, – но она принесла мне изрядное облегчение». Своему другу Эйсе Грею он написал: «Пангенезис, пожалуй, назовут больной фантазией[136], но в глубине души я верю, что эта теория содержит великую истину».

«Изрядное облегчение» оказалось непродолжительным: скоро «больная фантазия» Дарвина развеялась под натиском реальности. Тем летом, пока Дарвин работал над преобразованием рукописи «Изменения животных…» в полноценную книгу, в журнале North British Review вышла рецензия на его предыдущий труд, «Происхождение видов…». Рецензия таила аргумент против теории пангенезиса, самый мощный аргумент из всех, с которыми когда-либо доведется столкнуться Дарвину.

От автора рецензии сложно было ожидать критики работы Дарвина: Флеминг Дженкин, инженер-математик и изобретатель из Эдинбурга, вообще вряд ли до этого писал о биологии. Блестящий специалист, жесткий в суждениях, Дженкин имел широкий круг интересов, куда входили лингвистика, электротехника, механика, арифметика, физика, химия и экономика. Он читал невероятно много самой разной литературы: Диккенса, Дюма, Остин, Элиота, Ньютона, Мальтуса, Ламарка. Когда ему попалась книга Дарвина, Дженкин прочитал и ее, тщательно проследил логику рассуждений и немедленно нашел фатальный пробел в обосновании выводов.

Главная претензия Дженкина к работе Дарвина звучала так: если наследственные признаки в каждом поколении продолжают «смешиваться» друг с другом, то почему любая вариация при скрещиваниях ее носителя с исходными формами не «размывается» полностью? «[Вариант] будет задавлен[137] за счет численного превосходства, – писал Дженкин, – и спустя несколько поколений отличительные черты этого варианта исчезнут». В качестве примера Дженкин сочинил историю (пропитанную характерным для того времени расизмом): «Представим себе белого человека, потерпевшего кораблекрушение на острове, населенном неграми. <…> Наш выживший герой, возможно, станет там королем, убьет много чернокожих людей в борьбе за выживание и заведет много жен и детей».

Если наследственные инструкции смешиваются друг с другом, то «белый человек» Дженкина обречен – по крайней мере, в генетическом смысле. Его дети от черных жен унаследуют половину его наследственного материала, внуки – четверть, правнуки – восьмую часть, праправнуки – шестнадцатую, и так далее – пока через несколько поколений его материал не растворится полностью. Даже если бы «белые задатки» по качеству превосходили «черные» – то есть, по терминологии Дарвина, обеспечивали лучшую приспособленность, – ничто не спасло бы их от окончательного растворения после многократного смешивания с «черными». В конце концов единственный белокожий король стерся бы из генетической истории острова, несмотря на то, что детей у него было больше, чем у всех мужчин его поколения, и его наследственные задатки для выживания были самыми полезными.

Хотя Дженкин – возможно, нарочно – насытил свою историю отвратительными деталями, ее главная мысль была ясна. Если наследственность лишена механизма поддержания вариабельности (закрепления нового признака), это означает, что все измененные черты организмов в конце концов канут в небытие благодаря разбавлению. Уродцы навсегда останутся уродцами – если только не передадут свои признаки следующему поколению. Просперо мог без опаски пустить Калибана бродить по уединенному острову[138]. Сам принцип смешения создал бы естественную тюрьму для его наследственного материала. Даже если бы Калибану удалось продолжить род – точнее, именно в этом случае, – его наследственные черты постепенно растворились бы в океане «нормальности». Смешение – то же самое, что бесконечное разбавление, и никакая эволюционная информация в таких условиях не сохранится. Когда художник первый раз полощет кисть с краской в стакане с водой, вода становится синей или желтой. Но художник будет смывать с кисти и другие краски, и в какой-то момент вода неизбежно станет грязно-серой. Если ту же логику применить к животным и наследственности, то какая сила сможет спасти любую необычную черту от исчезновения? Почему, мог бы спросить Дженкин, все Дарвиновы вьюрки постепенно не посерели?[139]

Дарвина глубоко потрясли доводы Дженкина. «Флеминг Дженкин доставил мне много хлопот, – писал он, – но его комментарии были для меня полезнее, чем все прочие эссе и рецензии». Железную логику Дженкина нельзя было отрицать[140]: чтобы спасти свою теорию эволюции, Дарвину нужна была согласующаяся с ней теория наследственности.

Но какие свойства наследственности могли бы решить эту проблему? Чтобы дарвиновская эволюция работала, механизм наследования должен предполагать сохранение информации без разбавления или рассеяния. Смешение не подходит. Должны быть какие-то атомы информации – дискретные, нерастворимые, крайне стабильные частицы, которые передаются от родителя ребенку.

Но существовали ли доказательства такого «постоянства» в наследственности? Если бы Дарвин тщательнее просмотрел книги в своей обширной библиотеке, он нашел бы ссылку на малоизвестную статью малоизвестного ботаника из Брно. Скромно озаглавленная «Опыты над растительными гибридами»[141] и опубликованная в 1866 году в журнале, который почти никто не читал, статья была написана на сложном немецком и изобиловала математическими таблицами, которые Дарвин презирал. Тем не менее Дарвин был удивительно близок к прочтению этой статьи: в начале 1870-х, читая книгу о гибридах растений, он оставил развернутые пометки на страницах 50, 51, 53 и 54[142] – но таинственным образом пропустил страницу 52, где та самая статья о гибридах гороха подробно обсуждалась.

Если бы Дарвин прочитал ее – особенно когда писал «Изменение животных…» и строил концепцию пангенезиса, – он мог бы получить важнейший ключ к пониманию его собственной теории эволюции. Он был бы очарован ее идеями, поразился бы необыкновенной объяснительной силе и скрупулезности труда ее автора. Дарвин с его острым умом сразу оценил бы, какое значение имеет статья для понимания эволюции. Кроме того, он был бы рад увидеть, что автор статьи, Грегор Иоганн Мендель, – тоже клирик, августинский монах, который проделал другой, не менее грандиозный путь из теологии в биологию, приведший его за границы изведанного.

 

«Цветы он любил»[143]

Хотим познать лишь материю и силы, которые ей движут. Метафизика нас не интересует.

Манифест Общества естествоиспытателей города Брно, где в 1865 году впервые была прочитана статья Менделя[144]


Весь органический мир – результат бесчисленных сочетаний и вариаций относительно небольшого числа факторов. <…> Эти факторы – частицы, которые наука наследственности должна исследовать. Подобно тому, как физика и химия обращаются к молекулам и атомам, биологические науки должны постигать эти частицы, чтобы объяснить <…> феномены мира живого.

Хуго де Фриз[145]

Когда весной 1856 года Дарвин приступал к своему опусу об эволюции, Мендель решил вернуться в Вену[146], чтобы пересдать экзамен, заваленный в 1850-м. На этот раз он ощущал себя намного увереннее. Два года Грегор изучал физику, химию, геологию, ботанику и зоологию в Венском университете, после чего в 1853 году вернулся в монастырь и получил место замещающего учителя в Высшей реальной школе города Брно. Руководство школы очень трепетно относилось к экзаменационным проверкам и квалификации учителей, так что пришло время снова попытаться сдать сертификационный экзамен. Мендель подал соответствующую заявку в Вену.

К сожалению, вторая попытка тоже оказалась катастрофической. Мендель был болен – скорее всего, из-за сильной тревоги. Он прибыл в Вену с раскалывающейся головой и в ужасном настроении и в первый же из трех дней испытаний повздорил с экзаменатором по ботанике. Предмет разногласий в точности неизвестен, но вероятнее всего, спор касался образования видов, изменчивости и наследственности. Мендель решил не продолжать экзамен, вернулся в Брно и смирился с судьбой замещающего учителя. Больше он не предпринимал попыток получить сертификат.

В конце лета, все еще переживая из-за проваленного экзамена, Мендель собрал урожай гороха. Это был не первый его урожай: Грегор уже три года скрещивал горох в стеклянной монастырской теплице. В окрестных хозяйствах он добыл 34 сорта гороха и принялся скрещивать растения внутри каждого сорта, чтобы отобрать среди них «чистокровные» (или чистые линии) – такие сорта, в которых потомки ничем не отличаются от родителей: ни окраской цветков, ни текстурой семян[147]. Такие растения из поколения в поколение «оставались неизменными без всяких исключений»[148], писал Мендель. Подобное порождало подобное. Материал для экспериментов, таким образом, был готов.

Мендель заметил, что у чистых линий есть четкие наследуемые признаки с несколькими вариантами проявления. При скрещивании высоких растений получаются только высокие; низкорослые растения порождают только карликовые. У одних линий все семена гладкие, у других – угловатые и морщинистые. Незрелые стручки – или зеленые, или ярко-желтые; зрелые – или равномерно выпуклые, или с перетяжками между горошинами. Мендель перечислил семь признаков чистых линий:

Текстура поверхности семян (гладкая или морщинистая).

Цвет семян (желтый или зеленый).

Окраска цветков (белая или пурпурная).

Расположение цветка (верхушечное или пазушное).

Цвет стручка (зеленый или желтый).

Форма стручка (равномерно выпуклый или с перетяжками).

Высота растения (высокое или низкое).

Мендель заметил, что у каждого признака есть как минимум два варианта – как бывает два варианта произношения слова или расцветки пиджака (у признаков, с которыми работал Мендель, было всего два варианта проявления, но в природе часто встречаются признаки с большим числом вариантов – например, у некоторых растений цветки могут быть белыми, пурпурными, лиловыми или желтыми). Позже биологи назовут эти варианты аллелями, от латинского allos, что примерно означает «один из двух подтипов какого-то типа». Пурпурный и белый представляют два аллеля одного признака – окраски цветков. Высокое и низкое – два аллеля другого признака – высоты растений.

Чистые линии были лишь исходным материалом для эксперимента. Мендель знал: чтобы добраться до природы наследственности, нужны гибриды; только «бастард» (так немецкие ботаники называли экспериментальные гибриды) даст ключ к пониманию природы чистоты. Позже об этом забыли[149], но на самом деле Мендель отлично осознавал огромное значение своего исследования: он писал, что интересующий его вопрос критически важен в контексте «истории эволюции органических форм»[150]. Удивительно, но всего за два года ему удалось наработать базовый материал для изучения некоторых важных свойств наследственности. Если кратко, Мендель задался вопросом: получится ли растение средней высоты, если скрестить высокое растение с низким? Смешаются ли эти два аллеля?

Получение гибридов было утомительным занятием. В природе горох, как правило, самоопыляется. Пыльники и рыльце пестика зреют рядом в тесной «лодочке», и пыльца просто осыпается на рыльце родного цветка. Совсем другое дело перекрестное опыление. Чтобы создать гибриды, Менделю приходилось «кастрировать» каждый цветок, удаляя пыльники, и переносить оранжевый порошок пыльцы из одного цветка в другой. Он работал в одиночку, сгорбившись над грядками; в одной руке – кисточка для пыльцы, в другой – пинцет для отщипывания пыльников. Свою рабочую шляпу Грегор вешал на арфу, и потому на каждое посещение сада его напутствовал кристально чистый звук одной ноты. Это была его музыка.

Сложно сказать, насколько другие монахи аббатства были осведомлены о занятиях Менделя и интересовались ли ими вообще. Еще в начале 1850-х Мендель покушался на более смелый вариант эксперимента – тайком развел в своей келье белых и серых мышей и пытался получить их гибриды, – однако настоятель монастыря, обычно терпимый к причудам Менделя, на сей раз вмешался. Монах, склоняющий мышей к соитию, чтобы раскрыть природу наследственности, – это было уже слишком даже по меркам августинцев. Тогда Мендель переключился на растения и перенес свои эксперименты в теплицу. Противиться такому решению настоятель не стал: эксперименты с мышами он пресек, но гороху согласился дать шанс.

Поздним летом 1857 года монастырский сад[151] раскрасился белыми и пурпурными сполохами – зацвел первый гибридный горох. Мендель отметил окраску цветков каждого растения, а когда созрели стручки, раскрыл створки и изучил семена. Затем он провел новые гибридизации: скрестил низкие растения с высокими, желтостручковые – с зеленостручковыми, обладателей морщинистых горошин – с обладателями гладких. В следующем порыве вдохновения Мендель скрестил гибриды друг с другом и получил гибриды гибридов. В подобном духе эксперименты продолжались восемь лет. Посадки тем временем вышли за пределы теплицы и заняли прямоугольный участок суглинка 6 х 30 м рядом с трапезной. Этот участок Мендель мог видеть из окна своей кельи. Когда ветер вздымал занавески, комната будто бы превращалась в гигантский микроскоп с горохом на предметном стекле. Пальцы Менделя немели от бесконечного вылущивания гороха, а его рабочий журнал был под завязку заполнен таблицами и пометками с данными о тысячах скрещиваний.

«Как ни мала мысль, она все же может заполнить всю жизнь»[152], – сказал философ Людвиг Витгенштейн[153]. Действительно, жизнь Менделя, на первый взгляд, была заполнена крошечными мыслями. Посев, цветение, опыление, обрывание, вылущивание, подсчет – и опять все сначала. Этот процесс был мучительно скучным, но Мендель знал, что маленькие мысли часто вырастают в глобальные законы. Если бы мы могли выделить самое важное наследие мощной научной революции, прокатившейся по Европе XVIII века, это было бы осознание, что природа подчиняется единообразным и всеобъемлющим законам. Та же сила, что заставила яблоко упасть с ветки Ньютону на голову, заставляет планеты двигаться по своим орбитам. Если существует универсальный закон наследственности, значит, и зарождение гороха, и зарождение людей происходит в соответствии с ним. Опытная делянка Менделя, может, и была мала, но это вовсе не лишало его больших научных амбиций.

«Эксперименты продвигались медленно, – писал Мендель. – Сначала требовалось определенное терпение, но вскоре я обнаружил, что дела идут лучше, если вести несколько экспериментов одновременно». Проводя несколько скрещиваний параллельно, он получал данные быстрее и постепенно начал различать в них некоторые закономерности: непредвиденное постоянство, консервативные соотношения, количественную ритмичность. Наконец-то он вплотную подобрался к внутренней логике наследственности.

Первую закономерность было легко заметить. У гибридов первого поколения индивидуальные наследственные черты – растение высокое или низкое, с зелеными семенами или с желтыми – совершенно не смешивались. Высокие растения при скрещивании с карликовыми неизменно давали только высокие. От гибридизации обладателей круглых горошин с обладателями морщинистых получались экземпляры только с круглыми горошинами. Этой закономерности подчинялись все семь выделенных Менделем признаков. По его словам, «характер гибридов» не был промежуточным, а «повторял одну из родительских форм». Мендель назвал варианты признаков, которые «берут верх»[154] над другими, доминантными, а пропадающие – рецессивными.

Даже если бы Мендель на этом закончил эксперименты, огромный вклад в теорию наследственности уже был бы сделан. Существование доминантных и рецессивных аллелей признаков противоречило теориям XIX века о смешанном наследовании: у гибридов Менделя не было промежуточных черт. Проявлялся лишь один аллель, заставляя другой вариант признака исчезнуть.

Но куда пропадает рецессивный признак? Доминантный аллель его поглощает или устраняет? Чтобы ответить на этот вопрос, Мендель провел второй эксперимент. Он переопылил друг с другом гибриды от скрещивания высоких растений с низкими, получив третье поколение гороха[155]. Так как высокорослость – доминантный признак, все родительские особи в этом эксперименте были высокими, а признак низкорослости как бы пропадал. Результаты же их скрещивания оказались совершенно неожиданными. У части потомков низкорослость восстановилась[156] в первозданном виде после исчезновения на целое поколение. То же самое произошло и с остальными шестью признаками. Белые цветки исчезли у гибридов первого поколения, чтобы вновь появиться у гибридов второго. Мендель понял, что гибридный организм – составная структура с заявляющим о себе доминантным аллелем и скрытым рецессивным (Мендель называл такие варианты формами; термин «аллель» ввели генетики только в 1900-х).

Изучая математические связи – соотношения – между разными типами потомков от каждого скрещивания, Мендель начал строить модель наследования признаков[157]. Согласно этой модели, каждая форма признака определяется независимой неделимой частицей информации. Для каждого признака сушествуют два варианта частиц (два аллеля): определяющие высокий рост или низкий, белые цветы или фиолетовые, и так далее. Растение наследует по одной копии частиц от каждого родителя: один аллель – от отцовской особи через спермий, другой – от материнской через яйцеклетку. У гибрида сохраняются в целости оба аллеля, хотя обнаруживает свое существование только один.

Между 1857 и 1864 годами Мендель тысячами лущил плоды гороха и маниакально заносил в таблицы результаты гибридизаций («желтые семена, зеленые семядоли, белые цветы»). Данные оставались поразительно согласующимися. Маленькая делянка в монастырском саду поставляла ошеломляющие объемы данных для анализа: 28 тысяч растений, 40 тысяч цветков, около 400 тысяч семян. «В самом деле, нужна некоторая отвага[158], чтобы взяться за столь масштабный труд», – напишет позже Мендель. Но отвага – не то слово. В его работе больше проявлялось другое качество, которое можно было бы определить как чуткость (tenderness).

Этим словом редко описывают науку или ученых. Оно имеет общие корни с «уходом» (tending) – занятием фермера или садовника, но еще и с «натяжением» (tension), как у усика гороха, тянущегося к солнцу или к опоре. Мендель был в первую очередь садовником. Его гениальность подпитывалась не глубокими знаниями догматов биологии (к счастью, он провалил экзамен, притом дважды), а скорее инстинктивным знанием сада, сочетающимся с острой наблюдательностью. Кропотливое перекрестное опыление сеянцев, тщательное ведение таблиц с цветами семядолей и другими признаками вскоре наградили Менделя находками, необъяснимыми с позиций классического понимания наследования.

Эксперименты Менделя говорили, что наследственность можно объяснить только передачей дискретных единиц информации от родителей к потомкам. Спермий несет одну копию этой информации (аллель), яйцеклетка – другую (второй аллель); организм, таким образом, получает по одному аллелю от каждого из родителей. Когда этот организм сам производит спермии или яйцеклетки, аллели разделяются вновь: в яйцеклетку или спермий попадает лишь один из них – чтобы соединиться в новой комбинации в следующем поколении. Один аллель может доминировать над другим, когда они вместе. В присутствии доминантного аллеля рецессивный будто бы исчезает. Но если растение следующего поколения получает два рецессивных аллеля, свойства этого аллеля снова проявляются. Содержащаяся в одном аллеле информация неделима; сами частицы наследственности всегда остаются целыми.

Пример Доплера вернулся к Менделю: за шумом пряталась музыка, за кажущимся беспорядком скрывались законы, и только глубоко искусственный эксперимент – выведение гибридов чистых линий с простыми признаками – мог выявить эти скрытые закономерности. В основе великого разнообразия живых организмов – высоких, низких, морщинистых, гладких, зеленых, желтых – лежали частицы наследственной информации, передающиеся от поколения к поколению. Каждый признак наследуется как единое целое, самостоятельное, отчетливое и постоянное. Хоть Мендель и не дал название своей единице наследственности, он открыл ключевые свойства гена[159].

8 февраля 1865 года, через семь лет после выступления Дарвина и Уоллеса на встрече Линнеевского общества в Лондоне, Мендель представил первую часть своей статьи[160] на собрании куда менее помпезном: он обращался к фермерам, ботаникам и прочим биологам в Обществе естествоиспытателей города Брно (вторую часть он прочитал 8 марта, месяцем позже). Об этом историческом событии осталось мало записей. Известно, что в небольшом помещении Менделя слушали примерно 40 человек. Статья, набитая десятками таблиц и таинственными обозначениями признаков и вариантов, была весьма непростой даже для статистиков. Биологам же она, вероятно, казалась полной абракадаброй. Ботаники изучали в основном морфологию, не нумерологию. Подсчеты вариантов семян и цветков у десятков тысяч гибридных образцов должны были сильно озадачить современников Менделя; идея скрывающихся в природе мистических числовых «гармоний» вышла из моды вместе с Пифагором. После доклада Менделя один профессор ботаники решил обсудить «Происхождение видов…» Дарвина и теорию эволюции. Никто из слушателей не понял, как связаны эти темы. Даже если Мендель знал о возможной связи между «единицами наследственности» и эволюцией – а его черновые записи указывают на поиски такой связи, – в тот момент он не высказал об этом ничего определенного.

Статью Менделя опубликовал ежегодный журнал Proceedings of the Brno Natural Science Society[161]. Немногословный в жизни, на бумаге Мендель был еще лаконичнее: итог почти десятилетней работы он уместил всего на 44 удивительно унылых страницах. Копии были отправлены в десятки учреждений, включая английские Королевское и Линнеевское общества и Смитсоновский институт в Вашингтоне. Сам Мендель запросил 40 оттисков, которые, снабдив подробным предисловием, разослал ученым. Вполне вероятно, среди них был и Дарвин[162], но нет никаких свидетельств прочтения им этой статьи.

А далее воцарилось, как выразился один генетик, «одно из самых странных затиший в истории биологии»[163]. С 1866 по 1900 год статью процитировали всего четыре раза, что фактически означало ее научную кончину. Даже в 1890-е, когда вопросами человеческой наследственности и манипулирования ею серьезно озаботились политики США и Европы, имя и работа Менделя оставались неизвестными. Исследование, ставшее основой современной биологии, было погребено на страницах местечкового журнала, который читали в основном растениеводы затерянного в Центральной Европе городка.

В канун нового 1867 года Мендель отправил письмо в Мюнхен физиологу растений швейцарского происхождения Карлу фон Негели, приложив описание своих экспериментов. Негели ответил только через два месяца (что уже само по себе говорило о дистанцировании) сообщением вежливого, но ледяного тона. Авторитетный ботаник, Негели не уделил особого внимания Менделю и его работе. Питая инстинктивное недоверие к ученым-любителям, он небрежно приписал к своему ответу: «лишь эмпирически, <…> нельзя доказать рационально»[164], – будто бы экспериментально выведенные законы были хуже умозрительных.

125«Огромный пробел»: Darwin C. Darwin’s letter to Asa Gray, September 5, 1857 // Correspondence of Charles Darwin (https://www.darwin-project.ac.uk/letter/entry-2136).
126«Интересно, мистер Дарвин когда-нибудь»: Hall A. W. The Problem of Human Life: Embracing the «Evolution of Sound» and «Evolution Evolved,» with a Review of the Six Great Modern Scientists, Darwin, Huxley, Tyndall, Haeckel, Helmholtz, and Mayer. London: Hall & Company, 1880, 441.
127По мнению Ламарка, наследственные признаки: Strickberger M. W. The Lamarckian Heritage // Evolution. Boston: Jones & Bartlett, 1990.
128«степень выраженности признака пропорциональна»: Там же, 24.
129Великая Цепь Бытия – установленная богом иерархическая структура мира (лестница). Ее ярусами служат минералы, растения, животные, люди, ангелы, а венчает сам ее творец – образец совершенства, к которому стремятся все остальные. Эта зародившаяся в умах древнегреческих философов концепция набрала мощь в средневековой Европе и сохраняла популярность до XIX века.
130и чуть не довел себя до нервного расстройства: Schwartz J. In Pursuit of the Gene: From Darwin to DNA. Cambridge, MA: Harvard University Press, 2008, 2.
131Он назвал их геммулами: Там же, 2–3.
132Идея смешения наследственного материала: Charlesworth B., Charlesworth D. Darwin and genetics. Genetics. 2009; 3 (183): 757–766.
133Дарвин назвал свою теорию «пангенезис»: Там же, 759–60.
134«Изменение животных и растений в домашнем состоянии»: Darwin C. The Variation of Animals and Plants under Domestication (vol. 2). London: O. Judd, 1868.
135«Это поспешно выстроенная, сырая гипотеза»: Darwin C. Letter to T. H. Huxley // Correspondence of Charles Darwin (vol. 13), 151.
136«Пангенезис, пожалуй, назовут больной фантазией»: Darwin C. C. Darwin to Asa Gray, October 16, 1867 // The Life and Letters of Charles Darwin: Including Autobiographical Chapter, vol. 2. / Darwin F. (ed.). NY: Appleton, 1896, 256.
137«[Вариант] будет задавлен»: Jenkin F. The Origin of Species. North British Review. 1867; 47: 158.
138Просперо – волшебник из пьесы У. Шекспира «Буря», Калибан – его чудовищно уродливый раб-дикарь.
139Географическая изоляция могла бы стать частичным ответом на вопрос о «сером вьюрке», ведь она ограничивает скрещивание между разными вариантами. Но все равно оставалось бы неясным, почему разные формы вьюрков продолжают существовать на одном и том же острове, не теряя со временем уникальных черт. – Прим. автора.
140Железную логику Дженкина нельзя было отрицать. Справедливости ради нужно сказать, что Дарвин и без Дженкина видел в «смешанном наследовании» проблему. «Если разновидностям не препятствовать в свободном скрещивании, такие разновидности будут постоянно уничтожаться. <…> Любой слабый намек на отличие будет постоянно нейтрализовываться», – сетовал Дарвин в своей записной книжке.
141«Опыты над растительными гибридами»: Mendel G. Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereins Brno. 1866; 4: 3–47 (Journal of the Royal Horticultural Society. 1901; 26: 1–32).
142он оставил развернутые пометки на страницах 50, 51, 53 и 54: Galton D. Did Darwin read Mendel? Quarterly Journal of Medicine. 2009; 8 (102): 588.
143«Цветы он любил»: Edelson E. Gregor Mendel and the Roots of Genetics. NY: Oxford University Press, 1999; «Стихотворение Клеменса Янечека о Менделе, написанное после его смерти», 75.
144«Хотим познать лишь материю и силы, которые ей движут»: Sekerak J. Gregor Mendel and the scientific milieu of his discovery // The Global and the Local: The History of Science and the Cultural Integration of Europe, Proceedings of the 2nd ICESHS / Kokowski M. (ed.). Cracow, 2006.
145«Весь органический мир – результат бесчисленных сочетаний»: De Vries H. Mutual Independence of Hereditary Characters // Intracellular Pangenesis; Including a Paper on Fertilization and Hybridization. Chicago: Open Court, 1910.
146Мендель решил вернуться в Вену: Henig R. M. Monk in the Garden, 60.
147Исследованиям Менделя способствовало давнее увлечение местных фермеров выведением новых сортов растений. К гибридизационным экспериментам проявлял живой интерес даже аббат Сирил Франтишек Напп. – Прим. автора.
148«оставались неизменными без всяких исключений»: Reeve E. C. R. Encyclopedia of Genetics. London: Fitzroy Dearborn, 2001.
149Позже об этом забыли. У Менделя были немногочисленные предшественники, которые изучали растительные гибриды столь же интенсивно, но не столь глубоко погружаясь в подсчеты и количественный анализ. В 1820-х английские ботаники Томас Найт, Джон Госс, Александр Сетон и Уильям Герберт, пытаясь вывести более сильные и устойчивые сельскохозяйственные культуры, ставили эксперименты по гибридизации растений, удивительно схожие с менделевскими. Во Франции подобную работу с гибридами дыни проводил Огюстен Сажрэ. Со скрещиваниями табака активно экспериментировал знаменитый немецкий ботаник Йозеф Кёльрёйтер. Непосредственно перед Менделем работали немец Карл фон Гертнер и француз Шарль Ноден. Чарльз Дарвин совершенно точно читал исследования Сажрэ и Нодена, которые указывали на дискретный характер наследственной информации, однако он не смог тогда оценить их важность.
150в контексте «истории эволюции органических форм»: Mendel G. Experiments in Plant Hybridisation. NY: Cosimo, 2008.
151Поздним летом 1857 года монастырский сад: Henig R. M. Chapter 7: First Harvest // Monk in the Garden, 81.
152«Как ни мала мысль, она все же может»: Wittgenstein L. Culture and Value / Winch P. (trans.). Chicago: University of Chicago Press, 1984.
153Витгенштейн Л. Культура и ценность / пер. Ю. А. Асеева, М. С. Козловой // Философские работы. Москва: Гнозис, 1994. – Прим. перев.
154Мендель назвал варианты признаков, которые «берут верх»: Henig R. M. Monk in the Garden, 86.
155Или второе поколение гибридов.
156У части потомков низкорослость восстановилась: Там же, 130.
157Некоторые статистики, проверив оригинальные данные Менделя, обвинили его в подделке результатов. Его соотношения и числа оказались слишком уж идеальными. В его экспериментах будто бы не было статистических или естественных погрешностей, что на деле невозможно. Но оглядываясь назад, мы можем сказать, что Мендель вряд ли активно фальсифицировал результаты. Скорее, он сформировал гипотезу на основе данных своих ранних экспериментов, а более поздние эксперименты использовал для ее подтверждения: он прекращал считать горох и записывать данные, как только набирались ожидаемые величины и соотношения. Этот нетрадиционный подход для тех времен не был необычным, хотя и отражал некоторую научную наивность Менделя. – Прим. автора.
158«В самом деле, нужна некоторая отвага»: Mendel G. Experiments in Plant Hybridization, 8.
159Осознавал ли Мендель, что на самом деле пытается открыть всеобщие законы наследственности? Или, как утверждают некоторые историки, его целью было лишь понять закономерности гибридизации гороха? Ответ можно найти в статьях Менделя. Бесспорно, Мендель не знал о существовании «генов». Но, по его собственным словам, эксперименты проводились, «чтобы раскрыть характер связи гибридных форм с их <…> прародителями» и чтобы уяснить «единство плана развития органической жизни». Действительно, Мендель в своей статье даже использовал вариации слова «наследовать». Поэтому заявления, что Мендель не представлял значения своего исследования, кажутся странными: он действительно пытался раскрыть материальную основу и законы наследственности. – Прим. автора.
160Мендель представил первую часть своей статьи: Henig R. M. Chapter 11: Full Moon in February // Monk in the Garden. Вторая часть статьи Менделя была зачитана 8 марта 1865 года.
161Статью Менделя опубликовал ежегодный журнал: Mendel G. Experiments in Plant Hybridization (www.mendelweb.org/Mendel.html).
162Вполне вероятно, среди них был и Дарвин: Galton D. Did Darwin Read Mendel? 587.
163«одно из самых странных затиший в истории биологии»: Dunn L. C. A Short History of Genetics: The Development of Some of the Main Lines of thought, 1864–1939. Ames: Iowa State University Press, 1991.
164«лишь эмпирически, <…> нельзя доказать рационально»: Mendel G. Gregor Mendel’s letters to Carl Nägeli, 1866–1873. Genetics. 1950; 5 (35), pt. 2: 1.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40 
Рейтинг@Mail.ru