Некоторые эволюционисты утверждают, что белки, состоящие из длинных цепочек блоков-аминокислот, возникли в результате случайных совпадений на молекулярном уровне. Но это утверждение вызывает несколько очень серьезных возражений. Представим себе простую молекулу белка, состоящую из 100 блоков-аминокислот. Чтобы белок мог нормально функционировать в живом организме, все связи между аминокислотами должны быть пептидными. Аминокислоты могут быть связаны друг с другом разными способами, из которых пептидный способ связи встречается лишь в половине случаев. Таким образом, вероятность получения 100 аминокислот с пептидными связями равна 1:1030 (1 к 10 000 000 000 000 000 000 000 000 000 000). Кроме того, каждая молекула аминокислоты имеет левостороннюю L-форму (от латинского laevus – «левый») и правостороннюю D-форму (от латинского dexter – «правый»). Эти две формы являются как бы зеркальными отражениями друг друга, как левый и правый ботинки или левая и правая перчатки. Все белки в живых существах состоят из блоков левосторонних аминокислот. Но в природе левосторонние и правосторонние аминокислоты встречаются одинаково часто. Вероятность получения цепочки из 100 левосторонних аминокислот опять же равна 1:1030. Такова же вероятность выпадения монеты одной стороной 100 раз подряд. Аналогичным образом, вероятность возникновения цепочки из 100 левосторонних аминокислот с пептидными связями между ними равна 1:1060, что на доступном отрезке времени практически сводит эту вероятность на нет.
Но даже если все аминокислоты связаны пептидными связями и все они левосторонние, этого все равно недостаточно, чтобы получить функциональный белок. Неверно считать, что любая комбинация аминокислотных блоков дает в сумме белок, который может функционировать в составе клетки. Нужные аминокислоты должны соединяться в строго определенном порядке (Meyer. 1998. P. 126). Вероятность того, что это произойдет, сама по себе невероятно низка – около 1:1065 (1065 – таково количество атомов в нашей галактике). Иллюстрируя эту вероятность на наглядном примере, биохимик Майкл Бехе утверждает, что получить последовательность из 100 аминокислот, которые функционировали бы в качестве белка, – все равно, что отыскать одну помеченную песчинку в пустыне Сахара три раза подряд (Behe. 1994. Pp. 68–69). Если же учесть и другие факторы (необходимость наличия исключительно пептидных соединений и левосторонних аминокислот), то вероятность снижается до 1:10125. Излишне говорить, что такая вероятность ставит под вопрос случайное возникновение жизни из химических элементов.
Чтобы избежать такого заключения, некоторые ученые призывают на помощь теорию существования бесконечного множества вселенных. Но у них нет никаких доказательств существования даже одной вселенной, помимо нашей. Не объясняют они и то, как могут стабильные молекулы образоваться в этих воображаемых вселенных (стабильные молекулы необходимы для существования жизни, наблюдаемой в этой вселенной). В дальнейшем мы рассмотрим данную тему более подробно.
Некоторые ученые, такие, как Опарин (Oparin. 1968. Pp. 146–147), выдвинули предположение, что появлению функциональных белков способствовал естественный отбор аминокислотных цепочек (из которых они состоят), повышающий вероятность их возникновения. Другими словами, формирование протеинов в этом случае не является полностью случайным. Но эта теория имеет два серьезных недостатка. Во-первых, такой первичный естественный отбор должен оперировать уже готовыми цепочками аминокислот, возникновение которых, опять же, списывается на случай. Как мы уже убедились, вероятность возникновения даже простых цепочек аминокислот с исключительно пептидными соединениями и левосторонними аминокислотами настолько ничтожна, что не заслуживает внимания. Во-вторых, естественный отбор подразумевает некую молекулярную репродуктивную систему. Вероятность формирования такой системы в результате случайности еще меньше, чем вероятность появления нескольких видов аминокислотных цепочек, на которые мог бы распространяться естественный отбор. Сама по себе репродуктивная система должна состоять из комбинации вполне определенных сложных молекул белка. Следовательно, предположения, подобные тому, что высказал Опарин, содержат неразрешимое противоречие. Предполагается, что в результате естественного отбора возникнут сложные белковые соединения, но сам по себе такой отбор требует наличия надежной молекулярной репродуктивной системы, а все известные системы такого рода сами состоят из сложноорганизованных молекул белка совершенно определенной структуры. Опарин предположил, что первые репродуктивные системы не обязательно были надежными и могли состоять из белковых молекул, не имеющих столь определенной структуры, как белки в современных организмах. Однако Мейер указывает на то, что «недостаток… определенности в структуре белка приводит к катастрофическим ошибкам, которые сводят на нет точность репродуцирования и, в конечном счете, делают естественный отбор невозможным» (Meyer. 1998. P. 127).
Несмотря на эти проблемы, Ричард Доукинс в своей книге «Слепой часовщик» берется утверждать, что случайность и естественный отбор (представленный в виде простого вычислительного алгоритма) могут привести к возникновению сложных биологических структур (Dawkins. 1986. Pp. 47–49). Чтобы наглядно продемонстрировать возможность этого, он ввел в компьютер программу, которая выдает произвольные сочетания букв и сравнивает их с заданной буквенной последовательностью, образующей грамматически правильное и внятное предложение. Те комбинации букв, которые ближе всего к желаемой комбинации, сохраняются в памяти компьютера, тогда как другие стираются. Через определенное количество циклов компьютер выдает желаемое предложение. Доукинс рассматривает это как доказательство того, что случайная комбинация химических элементов может при помощи естественного отбора произвести на свет биологически функциональные белки. Однако это доказательство в корне неверно. Во-первых, эксперимент Доукинса предполагает наличие в природе сложного компьютера, чего мы не встречаем. Во-вторых, этот эксперимент предполагает наличие желаемой последовательности молекул. В природе не могло существовать заранее известной последовательности аминокислот, с которой сравнивались бы случайно образовавшиеся аминокислотные цепочки. В-третьих, предварительные буквенные сочетания, отбираемые компьютером, сами по себе не имеют никакого превосходства над другими сочетаниями с точки зрения лингвистического значения, за исключением того, что они на одну букву ближе к желаемой последовательности. Для того чтобы аналогия между компьютерным алгоритмом и реальной жизнью была правомерна, каждое сочетание букв, отобранное компьютером, должно обладать значением. В реальных условиях сочетание аминокислот, служащее материалом для образования сложного белка с определенной функцией, должно само по себе нести какую-нибудь функцию. Если такой функции нет, то естественному отбору не из чего выбирать. Мейер отмечает, что «в опыте Доукинса вплоть до десятого цикла не появляется ни одного значимого английского слова… Отбор сочетаний на основании их функциональности среди сочетаний, не обладающих никакими функциями, представляется невозможным. Такой отбор возможен только в том случае, если он происходит осознанно, путем рассмотрения близости полученных результатов к желаемому результату, что не под силу молекулам» (Meyer. 1998. P. 128). Иными словами, результаты, полученные Доукинсом, возможны только в том случае, если происходит осмысленный отбор.
Некоторые ученые выдвинули предположение, что на формирование белков из аминокислот влияет нечто большее, чем случайность и естественный отбор. Они полагают, что некоторые химические системы обладают способностью или тенденцией к самоорганизации. Штейнман и Коул предположили, что аминокислоты могу притягивать друг друга, причем аминокислоты разных типов притягиваются друг к другу с разной силой (Steinman, Cole. 1967). Тому есть экспериментальное подтверждение. Между аминокислотами действительно существует разное по силе притяжение. Штейнман и Коул утверждают, что порядок расположения аминокислот, который они наблюдали в процессе экспериментов, соответствовал их порядку в 10 реально существующих белковых молекулах. Но, когда Брэдли и его коллеги (Kok et al. 1988) сравнили последовательности, полученные Штейнманом и Коулом, с последовательностями в 250 реально существующих белковых молекулах, то обнаружили, что им «гораздо точнее соответствуют случайные статистические варианты, чем полученные Штейнманом и Коулом последовательности в дипептидных соединениях» (Bradley. 1998. P. 43). Верно и то, что если бы свойства 20 биологических аминокислот строго определяли структуру белковых молекул, то в результате мы имели бы лишь небольшое количество разновидностей молекул белка, тогда как на самом деле их тысячи (Bradley. 1998. P. 43).
Другая форма самоорганизации наблюдается, когда разобщенные молекулы вещества формируют кристаллы. В научной литературе это называется «спонтанное упорядочивание при изменениях в фазе равновесия». Формирование кристаллов имеет довольно простое объяснение. К примеру, когда температура воды опускается ниже точки замерзания, прекращается беспорядочное взаимодействие молекул воды, и они образуют упорядоченные соединения. В этом фазовом переходе молекулы воды тяготеют к состоянию равновесия, стремясь к наименьшему уровню потенциальной энергии и отдавая при этом свою энергию. Представьте, что посередине бильярдного стола образовалось широкое углубление. Если двигать стол из стороны в сторону, то бильярдные шары окажутся в этом углублении вплотную один к другому и в неподвижном состоянии. Это сопровождается потерей энергии, то есть процесс является экзотермическим. Но формирование сложных биологических молекул (биополимеров) проходит несколько иначе. Это эндотермический процесс, то есть тепло не выделяется, а поглощается, и происходит это вне всякого термического равновесия. Полимеры обладают более высоким энергетическим потенциалом, чем их отдельные компоненты. Это все равно как если бы посреди бильярдного стола находилось возвышение, а не углубление. Гораздо сложнее представить себе, как в результате произвольного движения стола бильярдные шары оказываются на этом возвышении, чем как они попадают в углубление в состоянии термального равновесия. Для того чтобы они оказались на возвышении и не скатились вниз, потребуется дополнительная энергия. Брэдли утверждает: «Все живые системы обладают энергией, которая выше точки равновесия, и нуждаются в постоянном притоке энергии, чтобы поддерживать это положение… В биосфере равновесие ассоциируется со смертью, что сводит на нет любое объяснение происхождения жизни, основанное на термодинамике в состоянии равновесия… фазовые изменения, такие как превращение воды в лед или снег, не могут служить примером для объяснения биологических процессов».
Порядок, который существует в кристаллах, представляет собой повторение несложных элементов, тогда как живые существа обладают гораздо более сложной структурой, в которой повторение элементов не играет большой роли. Упорядоченная структура биохимических компонентов тел живых существ не только невероятно сложна, но и очень специфична. Эта специфичная сложность несет в себе большой объем информации, которая позволяет биохимическим компонентам выполнять специфические функции, поддерживающие жизнедеятельность организма. Сравните буквенные последовательности АВАВАВАВАВАВАВ, РЧЗБМЬБПРМЖГМЬ и БОЛЬШОЙ КРАСНЫЙ ДОМ. Первая последовательность упорядочена, но не сложна и поэтому не информативна. Вторая последовательность сложна, но тоже неинформативна. Что же касается третьей последовательности букв, то она и сложна, и информативна. Последовательность букв содержит информацию, которая позволяет этому предложению выполнять специфическую коммуникативную функцию. Это свойство можно назвать «специфичной сложностью». Биологическая сложность белковых и других молекул, о которой идет речь, определяет их функцию (подобно белковому коду ДНК). Такие образцы сложных структур в корне отличаются от простых повторяющихся элементов, возникающих в процессе кристаллизации (Meyer. 1998. P. 134).
Илья Пригожин выдвинул теорию, согласно которой самовоспроизводящиеся организмы могли возникнуть вследствие реакций химических соединений, собранных воедино конвекционными потоками термальных источников, которые далеки от термального равновесия. Это несколько отличается от процесса кристаллизации, который подразумевает фазовые переходы в точке термического равновесия или близкой к ней. Брэдли, тем не менее, приходит к выводу, что, хотя упорядоченное поведение химических веществ в системах Пригожина имеет более сложную природу, чем в системах, находящихся в термальном равновесии, их порядок все же «более напоминает порядок в кристаллах и лишь в незначительной степени – порядок, который наблюдается в биополимерах» (Bradley. 1998. P. 42). К тому же, наблюдаемый в процессе экспериментов порядок можно отнести на счет сложного технического оснащения данных экспериментов. Цитируя Уолтона (Walton. 1977), Мейер утверждает: «даже самоорганизация, которую Пригожин наблюдал в конвекционных потоках, не превосходит по сложности организацию или информацию, заданную техническими средствами, которые используются для создания этих потоков при проведении данных экспериментов» (Meyer. 1998. P. 136).
Манфред Эйген полагает, что этапом на пути к возникновению самовоспроизводящихся живых организмов было появление групп взаимодействующих химических веществ, которые он именует «гиперциклами» (Eigen, Schuster. 1977; Eigen, Schuster. 1978a; Eigen, Schuster. 1978b). Однако Джон Майнард-Смит и Фриман Дайсон выявили недостатки в этом предположении (Maynard-Smith. 1979; Dyson. 1985). Мейер пишет: «Прежде всего, они показывают, что гиперциклы Эйгена предполагают наличие длинной молекулы РНК и около 40 специфичных белков. И, что более важно, они показывают, что, поскольку гиперциклам недостает безошибочного механизма самовоспроизведения, они подвержены разного рода катастрофическим ошибкам, а это в конечном итоге приводит к сокращению, а не к увеличению информационного содержания системы с течением времени».
Стюарт Кауфман из института Санта Фе применил другой подход к исследованиям сложноорганизованных молекул и проблемы самоорганизации. Он определил жизнь как сеть катализированных химических реакций, которые репродуцируют каждую молекулу в сети. Сами по себе молекулы не участвуют в воспроизведении себе подобных. Но, по его утверждению, в системе, состоящей по крайней мере из миллиона белковообразных молекул, велика вероятность того, что каждая из них катализирует формирование другой молекулы в системе. Поэтому в целом система способна воспроизводить саму себя. Достигнув определенной стадии, она, предположительно, претерпевает фазовое превращение, давая начало новому уровню сложности в организации всей системы. Однако концепция Кауфмана целиком основана на компьютерных моделях, имеющих мало общего с реально существующими живыми системами вступающих в реакцию химических веществ (Bradley. 1998. P. 44).
Прежде всего, следует отметить, что названная Кауфманом цифра в один миллион молекул слишком мала для создания условий, при которых каждая из них смогла бы катализировать формирование в системе молекулы другого вида. Но даже если бы миллиона видов молекул было достаточно, вероятность того, что определенная катализирующая молекула вызовет появление химических компонентов, нужных для возникновения другой молекулы, ничтожно мала (Bradley. 1998. P. 45).
Кроме того, компьютерные модели Кауфмана должным образом не учитывают экзотермическую природу формирования биополимеров – реакции берут энергию у системы и быстро истощают ее, приводя систему к «смерти». Кауфман предполагает, что энергообразующие реакции в системе компенсируют энергию, затраченную на формирование биополимеров. Однако Брэдли указывает, что эти реакции тоже требуют нахождения определенных молекул в нужном месте в нужное время для участия в реакциях (Bradley. 1998. P. 45). Модели Кауфмана не дают удовлетворительного объяснения, как это должно происходить. Брэдли добавляет: «Дегидрация и конденсация с преобразованием в субстраты – два возможных решения термодинамических проблем – только усложняют картину того, как 1 000 000 молекул могут организоваться в систему, в которой все катализаторы находятся на своих местах относительно реагентов, что позволило бы осуществиться их каталитическим функциям» (Bradley. 1998. P. 45). Иными словами, система Кауфмана не дает реалистичного объяснения того, как все молекулярные элементы могут оказаться на своих местах для осуществления всех необходимых каталитических и энергообразующих реакций. Это может не представлять важности в компьютерной программе, но только не в реальной жизни.
Величайшая проблема, с которой сталкиваются все сценарии возникновения жизни – это подробное объяснение происхождения первой репродуктивной системы ДНК, присутствующей в современных клетках. Попытки объяснить, как репродуктивная система ДНК могла возникнуть непосредственно из молекулярных блоков, оказались связаны с такими трудностями, что ученые были вынуждены от них отказаться. В наше время многие исследователи сосредоточивают свои усилия на объяснении возникновения основанной на РНК репродуктивной системы, которая играет вспомогательную роль в процессах воспроизведения современных клеток. Согласно их представлениям, в ранние периоды истории жизни на Земле существовал так называемый «мир РНК», который предшествовал нынешнему миру ДНК. РНК – это нуклеиновая кислота, обладающая способностью к самовоспроизведению при определенных условиях. Белки не могут репродуцировать себя без помощи энзимов, которые катализируют процесс самовоспроизведения. Решить эту проблему и позволяет молекула РНК. Остается предположить, что система репродуцирования, заложенная в молекулах РНК, на определенном этапе начала воспроизводить белки, строительные блоки организма.
Основная проблема, связанная с миром РНК, заключается в том, что ученые не могут дать удовлетворительного объяснения спонтанного возникновения РНК. Джералд Джойс и Лесли Орджел, два выдающихся исследователя РНК, признали тот факт, что трудно представить себе, как РНК могла самоорганизоваться на ранних этапах существования Земли. Две главные составляющие РНК – нуклеиновые кислоты и сахара – обладают свойством взаимооталкивания. Джойс и Орджел называют идею самоорганизации РНК «маловероятной в свете современного понимания добиологической химии» и говорят о «мифе возникновения самовоспроизводящейся молекулы РНК из первичного бульона, состоящего из хаотичного набора полинуклеотидов» (Joyce, Orgel. 1993. P. 13). Они также обращают внимание на главный парадокс теории происхождения жизни: «Трудно представить себе, как могла возникнуть самовоспроизводящаяся рибосома [РНК]; между тем, без изначального присутствия в первых примитивных рибосомах системы самовоспроизведения никакая эволюция невозможна». Следует также учитывать, что РНК способна самовоспроизводиться только в строго определенных лабораторных условиях, в существование которых на ранней стадии истории Земли поверить трудно. Другая проблема заключается в том, что есть много видов молекул РНК и не все они способны катализировать собственное самовоспроизведение. Бехе отмечает: «Одного чуда возникновения химически целостной РНК недостаточно. Потребовалось бы второе чудесное совпадение, чтобы получилась вторая дееспособная молекула РНК, поскольку большинство РНК не обладают способностью к самовоспроизведению» (Behe. 1996. P. 172).
Некоторые исследователи расширили свой поиск, предположив, что первая нуклеотидная молекула обладала способностью к репродуцированию без помощи энзимов, относящихся к РНК. Но пока все их усилия не дали результата, и такая молекула не была обнаружена. Например, Стэнли Миллер и другие предложили пептидонуклеиновую кислоту (ПНК) как альтернативу РНК в качестве первой самовоспроизводящейся молекулы. Согласно Миллеру, ПНК – более стабильная молекула, чем РНК. Но в ходе экспериментов Миллер смог произвести лишь некоторые компоненты ПНК, а не саму молекулу (Travis. 2000b). В результатах исследования, опубликованных в журнале «Science», Эшенмозер утверждает: «…опытным путем не было продемонстрировано, что какая-либо олигонуклеотидная система обладает способностью к эффективному и надежному неэнзимному воспроизведению в естественных условиях» (Eschenmoser. 1999. P. 2118). Говоря о РНК и других олигонуклеотидных молекулах, Эшенмозер утверждает, что «шансы их формирования в абиотических естественных условиях остаются под вопросом». Он признает, что, хотя большинство ученых считают формирование некоего подобного РНК олигонуклеотида ключевым шагом в появлении жизни, «убедительные экспериментальные доказательства возможности такого процесса в потенциально естественных условиях до сих пор отсутствуют».