Как сказал И. Шкловский, каждое явление, вызванное в Космосе искусственно, в наших глазах должно выглядеть как «чудо» – в том же смысле, в каком мы приняли бы за чудо самопроизвольную кристаллизацию работающего автомобиля внутри пласта железной руды. То, что является «чудом» с позиции знания о возможности явлений, происходящих естественным образом в Природе, должно представлять, ясное дело, результат разумной интервенции планирующего свои начинания Разума. К сожалению, более детальное рассмотрение различий, существующих между искусственным явлением (как намеренно сконструированный автомобиль) и естественным (как гравитационный коллапс звезды) ведёт нас в гущу дилемм, откуда следует поразительный вывод, что нет никакой абсолютной, объективно существующей разницы между тем, что натурально, и тем, что искусственно. Поэтому обе эти категории оказываются относительными и определяются уровнем знания наблюдателя. Ответ на вопрос, почему разница между тем, что искусственно, как звёздная инженерия, и тем, что естественно, как эволюция звёзд, носит относительный характер, зависит от уровня технологического развития, достигнутого цивилизацией, и выходит далеко за область технологии, а поэтому касается фундаментальных отношений, существующих между Разумом и Вселенной.
Простым примером относительности различий естественного и искусственного может быть высвобождение атомной энергии, рассматриваемое первый раз человеком прошлого века, а второй – современным. Для ученого из XIX века гриб ядерного взрыва представлял бы явление естественное, в его глазах это было бы проявлением стихийного действия сил Природы, поскольку этот учёный ничего не мог знать о возможности преднамеренного инициирования цепной реакции распада ядер. А ведь только несколько десятков лет истории отделяет этого наблюдателя от современного. Насколько тогда большей может быть пропасть, разделяющая знание и умение земной цивилизации от таких цивилизаций, которые занимаются инструментальной деятельностью в течение десятков тысяч лет! Однако же разница между естественным и искусственным сводится к тому, в какой мере можно вмешаться в ход материальных событий. Человек по-прежнему остаётся существом «телесно натуральным» – потому, что не умеет изменить параметры собственного тела ни экстренно, ни в потомстве – путём манипулирования наследственностью. В этом понимании человек особо одарённый рождается всегда естественно, то есть в результате такого соединения родительских генов, на которое мы не можем оказать никакого влияния. Однако, если бы окончательно сформировалась эта генная инженерия, о которой в настоящее время столько говорят, гений мог бы явиться на свет как естественным, так и искусственным способом. В этом случае граница между естественным и искусственным остаётся ещё явной. А что было бы, если бы человек, взявший в собственные руки судьбу своего вида, начал от поколения к поколению постепенно себя переделывать, придавая своему телу и разуму такие свойства, каких он до сих пор не имел? Каждое последующее поколение представляло бы конгломерат свойств отчасти ещё натуральных, а отчасти приданных искусственно, и через определённое время то, что генетически искусственно, и то, что естественно, соединилось бы в целое, неразличимое для современного наблюдателя. Таким образом, различия между естественными и искусственными чертами приобретают характер чисто исторический, ибо для того, чтобы их разделить, надо познать прошлое (может давно минувшее) данной разумной расы.
Теперь, когда мы опять обратимся к Космосу, нам будет легче понять, что в нём могут иметь место области явлений насколько «естественных», настолько же и «искусственных». Предположим, что какая-то космическая цивилизация несколько десятков миллионов лет эксплуатировала для своих целей шаровидное скопление звёзд, провоцируя массовые взрывы этих звёзд, а после получения необходимых для своих целей результатов или сырья прекратила деятельность в этой звёздной инженерии. Изменённые в новые или суперновые звёзды элементы этого шаровидного скопления преобразуются дальше, уже вне сферы инженерных интервенций. Каким же будет в таком случае ответ на вопрос, не являются ли естественными подобным образом изменённые небесные тела? Импульс, который привёл к резким переменам, был искусственным, но вместе с тем то, что он спровоцировал, как и то, что произошло позже, происходило согласно физическим законам природы. Тот, кто это скопление, быть может уже ставшее разновидностью туманности, изучал бы в настоящее время, ни в коей мере не определил бы, особенно на астрономическом расстоянии, его прошлое, то, что на некотором этапе оно подверглось инженерному вмешательству. Также в Космосе могут находиться звёздные «свалки», движущиеся по орбите залежи сырьевых отходов, остатки звёзд, погасших потому, что кто-то их энергию использовал в «неестественном» ускорении – но каким, собственно говоря, способом можно убедиться, что это было именно так?
Абсолютно возможно, что даже немалая часть феноменов, наблюдаемых земными астрономами, имеет именно такой запутанный, смешанный характер, что это есть поздние результаты давних вторжений, инструментальной деятельности, когда преследовались определённые цели, обусловленные достигнутым уровнем развития цивилизации. И так как это возможно, то мы не обладаем ни одним критерием выбора, использование которого позволило бы нам с уверенностью ставить соответствующий диагноз. Потому что главное правило естествознания – это объяснение всяческих явлений как происходящих естественным образом. Физик ведь не допускает мысли, что атомным ядрам кто-нибудь когда-нибудь мог бы придать определённые параметры так, как мы придаём желаемые параметры нашим ракетам или автомобилям. Также даже если учёные открывают объекты, ведущие себя согласно их прежним знаниям необъяснимо и загадочно – так было, например, с пульсарами, – они прилагают усилия, чтобы придумать такой естественный – следовательно, никем не нарушенный – ход событий, который самопроизвольно вызвал возникновение этих объектов. И для пульсаров нашли именно физический механизм, достаточно объясняющий их свойства, чтобы не надо было прибегать относительно них к гипотезе звёздной инженерии. Следует думать, что учёные так же будут поступать по отношению ко всем остальным, ещё не открытым чудесам Вселенной.
И тем самым обнаружение наблюдателями звёздной инженерии представляет собой изрядно твёрдый орешек. Поэтому диагноз её проявления никогда не может быть полностью точным, а уверенными в нём могут быть, пожалуй, только те, кто знает уже все её тайны, поскольку сами ею занимаются!
Ведь то, что Шкловский называет «космическим чудом», не противоречит законам Природы. Только в рамках действия этих законов является очень маловероятным. Или невероятным, вплоть до практической невозможности, как уже упоминавшаяся кристаллизация современного автомобиля из железной руды. Таким образом, хотя трудности распознавания астроинженерии довольно явно отличаются от трудностей, возникающих при поиске космических сигналов, сложно утверждать, чтобы эти первые были меньше вторых. Распознавание это не должно наполнять нас пессимизмом, даже наоборот, потому что, показывая сложную природу вещи, оно одновременно ведёт нас к дальнейшему накоплению знания.
Хотя это может прозвучать парадоксально, искатель проявлений звёздной инженерии должен руководствоваться в своих действиях не столько и не только тем, что согласно законам физики ВОЗМОЖНО, но и тем, что ими запрещено, устанавливая невозможность определённых событий.
Ничто не указывает на то, чтобы можно было каким-либо способом обойти законы термодинамики. Нельзя, например, получать энергию из ничего, энергию также нельзя уничтожить, нельзя преобразовать её в работу со стопроцентным коэффициентом полезного действия. Подобным ограничениям должно тогда подчиняться всякое инженерное действие в Космосе, и именно это обстоятельство создаёт определённые градиенты развития цивилизации.
Мы не знаем, какого рода энергию могут использовать на отдельных стадиях своего развития космические цивилизации. Однако мы знаем, что, невзирая на то, какие они используют при этом методы, их энергетический баланс подчиняется законам термодинамики. Так, например, прежде чем футурология занялась проблемами энергетики в масштабе Земли, астрофизики проекта CETI заметили, что росту освобождения энергии на планете должны быть установлены определённые границы, потому что иначе средняя температура Земли начала бы расти вплоть до невозможности жизни на ней. И это потому, что приход и расход энергии приводят к состоянию равновесия, в котором тело излучает столько же энергии, сколько её получает. Освобождая энергию, мы тем самым нагреваем Землю, и когда количество освобождённой энергии становится соизмеримо с энергией, полученной Землёй от Солнца, её тепловое равновесие нарушается. Поэтому уже сейчас обсуждается вопрос выведения на внеземные орбиты энергетических станций, которые захватывали бы солнечное излучение и переправляли его коротковолновыми пучками принимающим станциям на поверхности планеты. Такой центральный пункт, предположим, имея 40-процентную производительность, передавал бы на Землю только эти 40 процентов полученной энергии, излучая остальные 60 процентов в космический вакуум, тем самым значительно оберегая тепловой баланс нашей планеты. Если же прирост технологических мощностей должен продолжиться, на очереди окажется рекомендуемое размещение на орбите не только систем перехвата солнечного излучения, но и целых производственных единиц, поскольку только этим способом их энергетический баланс можно исключить из баланса планеты, на которую эти летающие производства (например, металлургические комбинаты) выделяли бы уже не энергию в сыром виде, а посылали готовые продукты конкретной технологии. Такого рода экстраполяции, если они направлены в очень отдалённое будущее, подсказывают возникновение градиента технологической космизации, то есть технологий, выведенных за пределы планеты. И поскольку потребление энергии тем более лёгкая задача, чем больше концентрация потоков этой энергии, то отсюда логично следует необходимость размещения космизированных производственных единиц не вблизи материнской планеты, а, скорее, вблизи Солнца, потому что там они будут работать в более энергетически выгодных условиях. Следует обратить внимание на тот факт, что космизация технологии – это, собственно говоря, не что иное, как использование Космоса в качестве охладителя для тепловых машин, причём такого охладителя, который ни в коей мере нельзя термически перегрузить, поскольку для всех практических целей тепловая абсорбционная способность Космоса бесконечно велика. Разумеется, энергия, приводящая в движение выведенную за пределы планеты технологию, не должна быть тепловой, но это дела не меняет, поскольку всякий род используемой энергии подлежит постепенной деградации, чтобы в конце этого пути перейти в тепловое излучение, от которого, собственно говоря, планету следует спасать. К вышеприведённым выводам наталкивает, как говорилось, принятие законов термодинамики как действующих повсеместно. Определяя тогда, что физически невозможно, мы облегчаем себе понимание того, что возможно, и намечающееся тем самым направление будущих инструментальных работ.
Представленный космический «exodus[8]» земной технологии может вступить в противоречие с громкой сегодня инновационной директивой, устанавливающей необходимость подражания, в рамках технологии, типовым биосферным процессам, а именно: круговоротам материи и энергии. Однако необходимо заметить, что решения циклического типа, желательные и просто неизбежные в недалёком будущем, не могут обещать постоянного прогресса, поскольку всякое техническое решение, не покидающее Землю, воздействует на её биосферу. Можно определить величину, которую следует назвать предельным цивилизационным ростом планетарной биосферы. Биосфера – это своего рода гомеостат, в котором происходит движение материи и энергии от природы неживой к живой и – обратными кругами цикла – наоборот. И поскольку с термодинамической точки зрения биосферный гомеостат является тепловой машиной, так как поглощает, чтобы поддерживать своё существование, солнечное излучение, а в последних звеньях жизненных процессов преобразует его в тепловую энергию, то тем самым антиэнтропическая часть работы этого гомеостата (то есть жизнь) вместе с энтропической частью (то есть с распадом) должна продолжаться в положении равновесия. Следовательно, предельный цивилизационный рост биосферы просто равен всему энергетическому приходу и расходу системы. Говоря иначе, естественную биосферу можно заменить её технически созданным эквивалентом, в пределах которого биологическую массу растений и животных заменили бы организмы людей, при этом, например, вместо растений фотосинтез осуществляли бы соответствующие устройства, создающие кормовые субстанции для людей, а также выделяющие кислород в атмосферу. На такой Земле не было бы уже никаких живых существ, кроме человека. Такая система должна была бы, для сохранения жизни, выполнять такие же задачи в границах энергетического баланса, какие выполняла прежде биосфера, которую она заменила. Картина эта, железного технологического волка, который впился в живое тело биосферы (словно волк в лошадь, как рассказывает об этом барон Мюнхаузен в одной из своих баек) и последовательно принял её функции, представляется нам отталкивающей и не годящейся для принятия, и я не считаю, что ей можно приписать ценность прогноза.
Эта картина только показывает нам, что, оставаясь на планете, человек не может значительно перегрузить биосферу своими технологиями и даже если бы он мог ими заменить работу массы живых биологических организмов, он не избавится от системных ограничений, поскольку должен или «поместиться» вместе со своими технологиями в энергетическом балансе системы, или привести эту систему к перегреву, который и его самого также погубит. Как мы знаем, своеобразная разновидность жизненной конкуренции, которую человек бессознательно привёл в движение среди других живых видов своими технологиями, уже сейчас начала угрожать также и его жизненной среде. Эти угрозы, в большой мере вызванные расточительностью начинаний, позволят сократить закрытые циклические производственные процессы, но конкуренции в сосуществовании цивилизации и биосферы совсем ликвидировать нельзя. Собственно говоря, нет технологий, не приносящих никакого вреда даже в том случае, если их «осваивают» так, чтобы они благоприятствовали сохранению других форм жизни помимо человеческих. Все эти обстоятельства, взятые вместе (антагонизм технологии и биосферной целостности, который можно уменьшить, но от которого нельзя избавиться полностью; предельная восстановительная способность атмосферы, океанов и биосферы; противоречие между потребностью сохранения глобального теплового равновесия и потребностью техноэнергетического роста) приводят к тому, что, будучи очередным исторически неизбежным шагом, циклически замкнутая (recycling) технология вместе с тем не является, подобно биосферной, таким способом перестройки цивилизационных начинаний, который гарантирует, после повсеместного внедрения, постоянный и ничем уже не ограниченный дальнейший прогресс. Расточительность можно и следует превратить в экономию; к экологически вредным технологиям в качестве защиты и лекарства нужно добавлять технологии, специально ориентированные на поддержку живой субстанции биосферы, но таким способом цивилизационный рост можно увеличивать только до определённого уровня. (Можно уже сегодня определять параметры этого роста, хотя оценочным, грубым и потому неточным способом, поскольку мы не знаем ни всех выходных данных, ни ориентируемся в фактической сложности биосферных круговоротов.) Из сказанного выше можно по-прежнему утверждать, что на смену фазе стихийности и расточительности в сфере технологических работ действительно должна прийти фаза технологий, функционирующих в замкнутых границах по эволюционно-биосферному образцу, но не как окончательная фаза, поскольку шагом радикально выходящим за пределы системных ограничений будет только космизация всё большей части инструментальных работ цивилизации.
Выше с двух сторон были представлены отдельные черты звёздной инженерии, сначала – словно рассматривая её снаружи, согласно задачам проекта CETI, когда мы говорили о них как о «космических чудесах», а потом – «изнутри», когда мы рассуждали, какие обстоятельства историческо-прогрессивной природы могли бы подтолкнуть человечество на путь космизации технологической деятельности. Эти картины следует сопроводить двойной оговоркой.
Во-первых, астроинженерное продолжение начатых на планете работ не представляет универсальной необходимости, поскольку этот шаг зависит от совокупности политических, экономических и человеческих факторов, которые могут его или отдалять от реализации, или же радикально перечеркнуть. Так, например, цивилизация, проводящая политику жёсткой демографической стабилизации, то есть такая, где численность населения, даже при достижении высочайшего индивидуального жизненного уровня, постоянно остаётся незначительной частью всей биологической массы биосферы, может от космизации технологии отказаться без всякого для себя вреда. Несложно понять, что если бы численность населения Земли никогда не превысила бы миллиард, стабилизировавшись на этом уровне с небольшими отклонениями от достигнутого равновесия, то количество энергии, вырабатываемой на одного жителя, даже допуская далеко идущий прогресс, удерживалось бы на безопасном для биосферы уровне. А то, что население планеты достигает четырёх, восьми или двадцати миллиардов, не исключает возможности его постепенного сокращения за некоторое количество поколений при соответственно проводимой демографической политике. По проблеме споров, которые наталисты ведут с антинаталистами, я здесь вовсе не высказываюсь, потому что вышеприведённое замечание должно только служить примером таких обстоятельств, когда космизация технологических процессов может не потребоваться.
Во-вторых, переход к каждой последующей фазе технологического развития представляет всегда столь же запутанную, сколь и трудную дилемму. Как я писал об этом в «Сумме технологии»: «Переход от одних, исчерпывающихся источников энергии к новым – от силы воды, ветра и мускулов к углю, нефти, а от них в свою очередь к атомной энергии – требует предварительного получения соответствующей информации. Только тогда, когда количество этой информации перейдёт через некоторую “критическую точку”, новая технология, созданная на её основе, открывает нам новые запасы энергии и новые области деятельности. Если бы, допустим, запасы угля и нефти были исчерпаны к концу XIX века, весьма сомнительно, добрались ли бы мы в середине нашего столетия до технологии атома, если учесть, что её осуществление требовало огромных мощностей, приведённых в действие сначала в лабораторном, а потом и в промышленном масштабе. И даже сейчас человечество ещё не вполне подготовлено к полному переходу на атомную энергию. Собственно говоря, промышленное использование “тяжёлой” атомной энергии (источником которой являются расщепления тяжёлых атомных ядер) при нынешнем темпе роста поглощаемых мощностей привело бы к “сжиганию” всех запасов урана и близких к нему элементов в течение одного-двух столетий. А использование энергии ядерного синтеза (превращение водорода в гелий) ещё не реализовано. Трудности оказались значительнее, чем поначалу можно было предвидеть. Из сказанного следует, во‑первых, что цивилизация должна располагать значительными энергетическими резервами, чтобы иметь время для получения информации, которая откроет ей врата новой энергии, и, во‑вторых, что цивилизация должна признать необходимость добывания такого рода информации задачей, главенствующей над всеми другими задачами. В противном случае она рискует исчерпать все доступные ей запасы энергии, прежде чем научится эксплуатировать новые. При этом опыт прошлого показывает, что энергетические расходы на получение новой информации растут по мере перехода от предыдущих источников энергии к последующим. Создание технологии угля и нефти было энергетически намного “дешевле”, чем создание атомной технологии»[9].
Актуальность этих утверждений, написанных двенадцать лет назад, уже сейчас несомненна. Более того, только сейчас эксперты начинают принимать во внимание в своих предварительных расчётах энергетические затраты, идущие на открытие новых источников энергии, потому что до сих пор их и не рассчитывали, и не учитывали в инвестициях. Затраты эти принимали за долю частного риска, какой принимает большой капитал, когда инвестирует средства в технологические инновации. А затраты эти уже в настоящее время столь велики, что в капиталистической системе справиться с ними можно только тогда, когда инвестором становится само государство, или если эту деятельность осуществляют крупные международные корпорации, в малой степени подверженные различным влияниям, в том числе и контролю властей. При этом намечается тенденция участия этих суперкорпораций в политическом процессе, называемая «социализацией потерь», но не прибыли, потому что, осознавая риск необычайно дорогих начинаний, которые должны привести к новым источникам энергии, такая надгосударственная корпорация желает, чтобы в случае понесённых при этом потерь она могла бы рассчитывать на дотации из государственной казны (или просто из кармана налогоплательщиков), зато никого не намерена допускать к участию в возможной прибыли. Политика большого капитала, так изменяющаяся относительно традиционных норм, встречает также сильное сопротивление, и надо предполагать, что в этой сфере, которую я не намерен здесь рассматривать, в недалёком будущем возникнут новые правила игры, которые будут закреплены в международных соглашениях.
В любом случае уже не подвергается сомнению тенденция, о которой я писал раньше: возрастание, в разы, стоимости очередных энергетических перестроений земной цивилизации. Без учёта того, сколько будет стоить для заинтересованных государств (тех, в которых существенно сказался энергетический кризис) атомизация энергетики, к которой сегодня приступают широким фронтом, ясно, что будущая космизация технологии будет задачей ещё более дорогой. По размерам необходимых на Земле подготовительных мероприятий, а также инвестированных во внеземном пространстве средств эти работы могут оказаться непосильны не только для капиталистических корпораций и не только для отдельных государств, но даже для великих держав, если они будут выполнять их в одиночку. Это значит, что объективная тенденция технологического развития будет благоприятствовать социализации производственных средств, будет принуждать к сотрудничеству, сглаживая, быть может скорее в Космосе, чем на Земле, межгосударственные границы. И это потому, что эта следующая уже звёздная фаза инженерии окажется тем эффективнее и продуктивнее, чем в большей степени будет результатом труда всего человечества. И поскольку всегда в истории давление объективных условий существования имеет больший эффект, чем благородные намерения, поскольку им принадлежит последнее слово, надо эту тенденцию, выводящую в Космос орудия трудов человеческих, признать не только обещающей преодоление земных технических ограничений, но также предвестником лучшего политического будущего мира.
Вышесказанным мы показали, в каких условиях и по каким причинам звёздная инженерия может стать очередным источником развития цивилизации. Из этого представления ясно следует, что переход от планетарной технологии к космической не является результатом чьего-то необузданного желания и безгранично распространившейся СВОБОДЫ действий, а исторической неизбежностью, ибо тот во Вселенной направляет силы на звёздные замыслы, кто уже ДОЛЖЕН действовать именно с таким размахом.