Попутно Резерфорд исследовал излучение, испускаемое радиоактивными элементами во время их превращений. Он доказал, что бета-излучение состоит из высокоэнергетических электронов, «во всех отношениях подобных катодным лучам»[169]. Он подозревал, а позднее, уже в Англии, и убедительно доказал, что альфа-частицы – это положительно заряженные атомы[170] гелия, испускаемые в процессе радиоактивного распада. Гелий находят заключенным внутри кристаллической структуры урановой и ториевой руды; теперь Резерфорд знал, с чем это связано.
В 1903 году Содди написал важную статью под названием «Радиоактивные преобразования» (Radioactive Change), в которой были приведены первые обоснованные расчеты количества энергии, выделяющейся при радиоактивном распаде:
Поэтому можно утверждать, что количество энергии, выделяющейся при распаде 1 г радия, не должно быть меньше 108 кал и может быть заключено в пределах от 109 до 1010 кал. Энергия излучения не обязательно равна полной энергии распада, а может составлять лишь малую ее часть, поэтому с достаточной уверенностью можно принять значение 108 кал как наименьшую вероятную величину энергии радиоактивного превращения радия. При соединении водорода и кислорода выделяется примерно 4 · 103 кал на 1 г образующейся воды, а ведь при этой реакции на единицу веса выделяется большее количество энергии, чем при любом другом известном нам химическом превращении. Следовательно, энергия радиоактивного превращения по крайней мере в двадцать тысяч, а может быть, и в миллион раз превышает энергию любого молекулярного превращения[171][172].
Таково было строгое научное утверждение; неформально же Резерфорд был склонен к причудливой эсхатологии. Один из кембриджских ученых, писавший в том же 1903 году статью по радиоактивности, подумывал процитировать высказанное Резерфордом «шутливое предположение о том, что, если только найдется подходящий детонатор, можно будет представить себе возможность запуска в материи волны атомного распада, которая и впрямь спалит весь наш старый мир дотла»[173]. Резерфорд часто шутил, что «какой-нибудь дурак, работая в лаборатории, может ненароком взорвать Вселенную»[174]. Даже если атомной энергии и не суждено было стать полезной, она вполне могла быть опасной.
Содди, вернувшийся в том же году в Англию, исследовал эту тему более серьезно. В своем докладе по радию, прочитанном в 1904 году перед Корпусом королевских инженеров, он дальновидно рассуждал о некоторых из возможных применений атомной энергии:
Вероятно, любое тяжелое вещество обладает – находящейся в скрытом виде и связанной структурой атома – энергией, количество которой сходно с содержащимся в радии. Если бы эту энергию можно было извлечь управляемым образом, какое мощное средство для определения судеб мира можно было бы получить! Человек, взявший в руки рычаг, при помощи которого природа столь скупо отмеривает выдачу энергии из этих запасов, получил бы в свое распоряжение оружие, которым он мог бы, если бы захотел, уничтожить всю Землю.
Содди не считал такую возможность вероятной: «Сам факт нашего существования доказывает, что [крупномасштабного высвобождения энергии] никогда не случалось; а то, что такого не случалось раньше, есть наилучшая из возможных гарантий того, что этого не произойдет и впредь. Мы можем рассчитывать на то, что Природа сохранит свою тайну»[175].
Когда Герберт Уэллс прочитал сходные утверждения в вышедшей в 1909 году книге Содди «Интерпретация радия»[176] (Interpretation of Radium), ему не показалось, что Природа настолько заслуживает доверия. «Я позаимствовал свою идею у Содди», – писал он о книге «Освобожденный мир». Он назвал свое произведение «одним из старых добрых научных романов»[177]; оно было для него настолько важным, что для его написания он прервал серию романов социальных. Таким образом, именно рассуждения Резерфорда и Содди о радиоактивных превращениях послужили источником вдохновения для того научно-фантастического романа, который в конце концов навел Лео Сциларда на размышления о цепных реакциях и атомных бомбах.
Летом 1903 года Резерфорды побывали в Париже и посетили супругов Кюри. Так совпало, что именно в день их приезда Мария Кюри получала свою докторскую степень по естественным наукам; общие друзья организовали празднование этого события. «После весьма оживленного вечера, – вспоминал Резерфорд, – около 11 часов мы вышли в сад, и профессор Кюри вынес туда трубку, частично покрытую сульфидом цинка, в которой содержалось большое количество раствора радия. Она ярко светилась в темноте, и это стало великолепным завершением этого незабываемого дня». Покрытие из сульфида цинка флуоресцировало белым светом, что позволяло увидеть в темноте парижского вечера, как радий испускает частицы высокой энергии, сдвигаясь по периодической системе от урана к свинцу. Свечение было настолько ярким, что Резерфорд смог рассмотреть руки Пьера Кюри, бывшие «в чрезвычайно воспаленном и болезненном состоянии в результате воздействия лучей радия»[178]. Опухшие от радиационных ожогов руки были еще одной наглядной иллюстрацией того, на что способна энергия, содержащаяся в материи.
В 1905 году к Резерфорду в Монреаль приехал тридцатишестилетний немецкий химик Отто Ган. До этого Ган уже открыл новый «элемент» радиоторий, но впоследствии стало ясно, что он представляет собой один из двенадцати изотопов тория. Вместе с Резерфордом он исследовал излучение тория; вместе они установили, что альфа-частицы, испускаемые торием, имеют ту же массу, что и альфа-частицы, испускаемые другим радиоактивным элементом, актинием. Таким образом, речь, вероятно, шла об одних и тех же частицах – и этот вывод стал еще одним шагом к доказательству того, что альфа-частица представляет собой заряженный атом[179] гелия, которое Резерфорд получил в 1908 году. В 1906-м Ган вернулся в Германию, где его ждала славная карьера первооткрывателя изотопов и химических элементов; Лео Сцилард встретился с ним, когда работал в 1920-х годах в берлинском Институте химии кайзера Вильгельма вместе с физиком Лизой Мейтнер.
Исследования по распутыванию сложных превращений радиоактивных элементов, которые Резерфорд проводил в Университете Макгилла, принесли ему в 1908 году Нобелевскую премию – но не по физике, а по химии. Он стремился к этой премии и писал жене в конце 1904 года, когда она вернулась в Новую Зеландию повидаться с родными: «Если я буду продолжать в том же духе, у меня может быть шанс»[180]; а в начале 1905 года снова: «Все идут за мной по пятам, и чтобы у меня была хоть какая-то надежда получить Нобелевскую премию в ближайшие годы, мне необходимо продолжать развивать свою работу»[181]. То, что он получил премию по химии, а не по физике, его по меньшей мере забавляло. «Его до самого конца отлично можно было этим дразнить, – говорит его зять, – и он прекрасно понимал комизм этой истории, что на него навечно приклеили ярлык химика, а не настоящего физика»[182].
Те, кто присутствовал на церемонии[183], говорили, что Резерфорд выглядел до смешного молодо – ему было тридцать семь лет – и произнес самую важную речь этого вечера. Он объявил о недавно полученном доказательстве того, что альфа-частицы на самом деле представляют собой гелий, – в предыдущем месяце было обнародовано лишь краткое сообщение об этих результатах[184]. Доказательство это было получено в эксперименте, проведенном с характерным изяществом. Резерфорд заказал стеклодувам трубку с чрезвычайно тонкими стенками. Откачав воздух из этой трубки, он заполнил ее газообразным радоном, мощным источником альфа-частиц. Трубка была герметичной для газов, но альфа-частицы могли вылетать из нее сквозь тонкие стенки. Трубку с радоном Резерфорд поместил в другую стеклянную трубку, откачал воздух из пространства между трубками и загерметизировал его. «Через несколько дней, – торжествующе сказал он своим слушателям в Стокгольме, – во внешнем сосуде наблюдался яркий спектр гелия»[185]. Опыты Резерфорда до сих пор ошеломляют своей простотой. «В этом отношении Резерфорд был настоящим художником, – говорит один из его бывших учеников. – Все его опыты были элегантны»[186].
Весной 1907 года Резерфорд уехал из Монреаля вместе со своей семьей – в которую к тому времени входила и шестилетняя дочь, его единственный ребенок, – и вернулся в Англию. Он согласился занять должность профессора физики в Манчестере, том самом городе, в котором Джон Дальтон почти в точности за век до того положил начало возрождению атомистической теории. Резерфорд купил там дом и сразу приступил к работе. Вместе с кафедрой ему достался опытный немецкий физик Ханс Гейгер, бывший ассистентом у его предшественника. Много лет спустя Гейгер тепло вспоминал те манчестерские дни и Резерфорда, окруженного научным оборудованием:
Я вижу его тихий рабочий кабинет на верхнем этаже физического корпуса, под самой крышей, где хранился его радий и было выполнено столько знаменитых работ по радиоактивным выделениям. Но я вижу также и мрачный подвал, в котором он установил свои точные приборы для изучения альфа-лучей. Резерфорд обожал эту комнату. Нужно было спуститься на две ступеньки, и тогда из темноты раздавался голос Резерфорда, который предупреждал, что нужно не задеть головой проходящую через комнату горячую трубу и не споткнуться о еще две водопроводных трубы. После этого наконец можно было увидеть в слабом освещении и самого великого мужа, сидящего за своими приборами[187].
Дом Резерфорда был местом более жизнерадостным; еще один из его манчестерских питомцев с удовольствием вспоминал «проходившие по субботам и воскресеньям ужины в выкрашенной белым столовой, за которыми следовали сборища в кабинете на втором этаже, продолжавшиеся до глубокой ночи; воскресные чаепития в гостиной, часто сопровождавшиеся автомобильными прогулками по дорогам Чешира»[188]. Спиртного в доме не было, потому что Мэри Резерфорд его употребления не одобряла. Ей пришлось поневоле смириться с курением, так как ее муж курил постоянно – и трубку, и сигареты.
К началу среднего возраста он стал известен своей громогласностью – один из учеников назвал его «вождем племени» – и любовью к шуткам и жаргону. Он расхаживал по лаборатории, фальшиво распевая «Вперед, Христово воинство»[189]. Теперь он стал видной фигурой; его трудно было не заметить. У него было румяное лицо с часто мигающими голубыми глазами и начало появляться весьма заметное брюшко. Его неуверенность в себе была хорошо замаскирована; его рукопожатие было коротким, мягким и несильным[190]. «Создавалось впечатление, – говорит еще один из его бывших учеников, – что он избегал физических контактов»[191]. Его по-прежнему могло выбить из колеи высокомерное отношение: тогда он густо краснел и отворачивался в замешательстве[192]. В общении со своими учениками он вел себя спокойнее и мягче, почти идеально. «Этот человек, – восхищенно говорит один из них, – никогда не жульничал»[193].
Биохимик Хаим Вейцман, еврей из России, ставший впоследствии первым президентом Израиля, исследовал в то время в Манчестере продукты ферментации. Они с Резерфордом стали добрыми друзьями. «Моложавый, энергичный, шумный, – вспоминал Вейцман, – он был похож на кого угодно, только не на ученого. Он охотно и напористо разглагольствовал на любую тему на свете, зачастую не зная о ней ничего. Когда я шел в столовую на обед, я слышал, как по коридору раскатывается его громкий, дружелюбный голос». Вейцман считал, что Резерфорд совершенно не разбирается в политике, но не винил его в этом, потому что все его время занимала важная научная работа. «Он был человеком добродушным, но терпеть не мог глупости»[194].
В сентябре 1907 года, во время своего первого семестра в Манчестере, Резерфорд составил список возможных тем для исследований. Седьмым пунктом в этом списке шло «Рассеяние альфа-лучей»[195]. Проработав несколько лет над определением сущности альфа-лучей, он смог оценить их достоинства в качестве инструмента для изучения атома; альфа-частицы были массивными по сравнению с практически невесомыми бета-частицами, то есть электронами, хотя последние и обладали более высокой энергией, и активно взаимодействовали с материей. Измерение таких взаимодействий могло дать информацию о строении атома. «Меня учили считать атом этаким симпатичным твердым объектом, красного или серого цвета, кому как нравится»[196], – сказал однажды Резерфорд, выступая на банкете. К 1907 году ему стало ясно, что атом – это вовсе не твердый объект, а по большей части пустое пространство. Немецкий физик Филипп Ленард продемонстрировал это еще в 1903 году, бомбардируя разные элементы катодными лучами[197]. Ленард описал свои результаты яркой метафорой: пространство, которое занимает кубический метр твердой платины, говорил он, так же пусто, как и межзвездное пространство за пределами Земли.
Но если в атомах содержалось пустое пространство – пустота внутри пустоты, – было в них и нечто другое. В 1906 году, работая в Университете Макгилла, Резерфорд изучал магнитное отклонение альфа-частиц, проводя их сквозь узкую формующую щель и пропуская получившийся тонкий пучок через магнитное поле. В одном из опытов он закрыл половину формующей щели листом слюды толщиной всего около трех тысячных сантиметра, то есть достаточно тонким для пропускания альфа-частиц. Регистрируя результаты опыта на фотобумаге, он обнаружил, что краевые участки пучка, пропущенного сквозь слюду, оказались размытыми. Это означало, что во время прохождения альфа-частиц атомы слюды рассеивают многие из них – то есть отклоняют их от прямолинейной траектории на углы, достигающие 2°. Поскольку сильное магнитное поле рассеивало альфа-частицы, не прошедшие сквозь слюду, лишь немногим больше, тут явно происходило нечто необычное. Для такой массивной частицы, как альфа, летящей со столь высокой скоростью, отклонение на 2° было огромным. Резерфорд подсчитал, что для такого отклонения альфа-частиц требуется электрическое поле порядка 100 миллионов вольт на сантиметр слюды[198]. «Такой результат ясно показывает, – писал он, – что атомы вещества должны быть теми областями, где действуют очень интенсивные электрические силы, – вывод, который находится в согласии с электронной теорией вещества»[199][200]. Именно это рассеяние он и внес в свой список предметов для исследования.
Для этого ему нужно было не только подсчитывать, но и видеть отдельные альфа-частицы. Уже в Манчестере он начал работу по совершенствованию необходимых для этого приборов. Вместе с Хансом Гейгером они стали разрабатывать электрическое устройство, которое отмечало бы прибытие каждой отдельной альфа-частицы в счетную камеру. Впоследствии Гейгер усовершенствовал это изобретение, получив знакомый нам счетчик Гейгера, который используется в современных исследованиях радиации.
Отдельные альфа-частицы можно было сделать видимыми при помощи сульфида цинка – вещества, использованного для покрытия пробирок с раствором радия, которые Пьер Кюри принес в ночной парижский сад в 1903 году. Если взять маленькую стеклянную пластинку, покрытую сульфидом цинка, и бомбардировать ее альфа-частицами, в каждой ее точке, в которую попадает частица, на короткое время возникает флуоресценция. Это явление называют «сцинтилляцией», от латинского слова scintilla, то есть «искра». При помощи микроскопа можно различить и подсчитать отдельные слабые сцинтилляционные вспышки сульфида цинка. Этот метод был чрезвычайно трудоемким и утомительным. Экспериментаторы должны были провести по меньшей мере тридцать минут в темной комнате, чтобы их глаза привыкли к темноте, а затем по очереди подсчитывать вспышки в течение минуты каждый, меняясь по звонку таймера[201], – потому что дольше этого пристально рассматривать маленький темный экран было невозможно. Даже в микроскоп вспышки были еле-еле заметны, и наблюдатель, ожидавший возникновения определенного числа вспышек, иногда мог непреднамеренно видеть вспышки воображаемые. Таким образом, было неясно, насколько точным такой подсчет вообще может быть. Резерфорд и Гейгер сравнили результаты такого визуального подсчета с соответствующими данными электрического счетчика. Когда выяснилось, что наблюдатели обеспечивают достаточно точный подсчет, от электрического счетчика отказались. Он мог подсчитывать частицы, но не позволял их увидеть, а Резерфорда прежде всего интересовало определение положения альфа-частиц в пространстве.
Гейгер продолжил изучение рассеяния альфа-частиц с помощью Эрнеста Марсдена, бывшего тогда восемнадцатилетним студентом Манчестерского университета. Они наблюдали альфа-частицы, вылетающие из трубки-источника и проходящие сквозь фольгу из разных металлов – алюминия, серебра, золота или платины. Результаты по большей части соответствовали ожиданиям: альфа-частицы вполне могли набрать до 2° суммарного отклонения, отражаясь от атомов, предполагаемых пудинговой моделью. Однако вызывало беспокойство присутствие в этом эксперименте частиц, поведение которых было аномальным[202]. Гейгер и Марсден считали, что их могут рассеивать молекулы стенок трубки-источника. Они попытались избавиться от аномальных частиц путем сужения и формования конца трубки набором металлических шайб калиброванного размера. Это не помогло.
Однажды в лабораторию зашел Резерфорд. Втроем они обсудили эту проблему. Что-то в ней навело Резерфорда на интуитивное предположение о возможности интересных побочных явлений. Не придавая этому почти никакого значения, он повернулся к Марсдену и сказал: «Посмотрите, нельзя ли увидеть эффект прямого отражения альфа-частиц от металлической поверхности»[203]. Марсден знал, что результат такого опыта предположительно должен быть отрицательным – альфа-частицы должны пролетать сквозь тонкую фольгу, а не отражаться от нее, – но упустить положительный результат было бы непростительным прегрешением. Он самым тщательным образом подготовил сильный источник альфа-излучения и направил тончайший пучок альфа-частиц на лист золотой фольги под углом 45°. Сцинтилляционный экран был установлен с той же стороны от фольги, что и источник, так что частицы, отражающиеся назад, должны были попадать в экран и вызывать сцинтилляцию. Между источником и экраном Марсден расположил толстую свинцовую пластину, чтобы исключить вмешательство альфа-частиц, попадающих на экран прямо из источника.
Схема эксперимента Эрнеста Марсдена: А—В – источник альфа-частиц, R—R – золотая фольга, Р – свинцовая пластина, S – сцинтилляционный экран из сульфида цинка, М – микроскоп
К своему удивлению, он немедленно обнаружил то, что искал. «Я хорошо помню, как рассказал об этом результате Резерфорду, – писал он, – которого я встретил на лестнице, ведущей в его комнату, и с каким восторгом сообщил ему об этом»[204].
Несколько недель спустя Гейгер и Марсден по указанию Резерфорда подготовили результаты опыта к публикации. «С учетом высокой скорости и массы α-частицы, – писали они в заключение, – кажется удивительным, что, как показывает этот эксперимент, некоторые из α-частиц могут быть повернуты в слое золота толщиной 6 × 10–5 [т. е. 0,00006] см на угол 90° и даже более. Для получения аналогичного эффекта в магнитном поле потребовалось бы поле огромной напряженности в 109 абсолютных единиц»[205]. Тем временем Резерфорд продолжал размышлять о том, что может означать такое рассеяние.
Размышлял он об этом, занимаясь в то же время другой работой, больше года. В самом начале он интуитивно понял, что означает этот эксперимент, но затем это понимание пропало[206]. Даже после того, как он обнародовал свои потрясающие выводы, ему не хватало уверенности настаивать на них. Одна из причин такой его нерешительности могла заключаться в том, что это открытие противоречило моделям атома, которые сформулировали ранее Дж. Дж. Томсон и лорд Кельвин. Кроме того, в его интерпретации открытия Марсдена возникали и некоторые физические противоречия, которые тоже нужно было объяснить.
Резерфорд был искренне поражен результатами Марсдена. «Это было поистине самое невероятное событие, случившееся со мной за всю мою жизнь, – говорил он впоследствии. – Это было так же невероятно, как если бы мы выстрелили 15-дюймовым снарядом по листу папиросной бумаги, а снаряд прилетел бы обратно и попал в нас. Поразмыслив, я понял, что такое обратное рассеяние должно быть результатом единичного столкновения, а когда я выполнил расчеты, оказалось, что эффект такого порядка величины возможен только в одном случае – если рассматривать систему, в которой подавляющая часть массы атома сосредоточена в ядре чрезвычайно малого размера»[207].
Слово «столкновение» обманчиво. То, что представлял себе Резерфорд, выполняя расчеты и чертя схемы атомов на больших листах плотной бумаги[208], в точности соответствовало такой искривленной траектории, направленной сначала к компактному, массивному центральному телу, а затем от него, которую описывает комета в своем гравитационном па-де-де с Солнцем. Он изготовил специальную модель – тяжелый электромагнит, подвешенный наподобие маятника на десятиметровой проволоке и скользящий по поверхности другого электромагнита, установленного на столе[209]. Когда у двух соприкасающихся сторон магнитов были одинаковые полярности, что вызывало их взаимное отталкивание, маятник отклонялся по параболической траектории, зависящей от скорости и угла сближения, – точно так же, как отклонялись альфа-частицы. Резерфорду, как всегда, требовалось наглядное представление того, над чем он работал.
Когда и последующие эксперименты подтвердили его теорию о существовании в атоме маленького массивного ядра, он наконец решился ее обнародовать. В качестве аудитории он выбрал старую манчестерскую организацию, Манчестерское литературно-философское общество – то есть «в основном людей с улицы, – говорит Джеймс Чедвик, еще студентом присутствовавший при этом историческом событии 7 марта 1911 года, – людей, интересовавшихся литературными и философскими идеями, в основном коммерсантов»[210].
Первым пунктом повестки дня было сообщение манчестерского импортера фруктов о редкой змее, которую он нашел в партии бананов с Ямайки. Змею он продемонстрировал[211]. Затем настала очередь Резерфорда. Сохранилась лишь аннотация его выступления, но Чедвик вспоминает, что он чувствовал, слушая его: «Для нас, совсем молодых, это выступление было совершенно потрясающим… Мы понимали, что эта идея явно истинна, что это и есть подлинная суть»[212].
Резерфорд нашел в атоме ядро. Пока что он не знал, как располагаются электроны атома. На собрании в Манчестере он говорил о том, что «…атом, по предположению, состоит из центрального ядра, окруженного зарядом противоположного знака, равномерно распределенным внутри сферы радиуса R…»[213][214]. Эта формулировка была достаточно обобщенной для расчетов, но не учитывала того существенного физического факта, что «противоположный электрический заряд» должен быть воплощен в электронах. Они должны каким-то образом располагаться вокруг ядра.
Здесь мы встречаемся еще с одной загадкой. В 1903 году японский физик-теоретик Хантаро Нагаока предложил «сатурнианскую» модель атома, в которой вокруг «положительно заряженной частицы» вращаются плоские кольца электронов, подобные кольцам Сатурна[215]. Нагаока приспособил для своей модели математический аппарат, взятый из первой статьи Джеймса Клерка Максвелла, опубликованной в 1859 году и принесшей ему триумфальный успех; она называлась «Об устойчивости движения колец Сатурна». Все биографы Резерфорда согласны в том, что Резерфорд узнал о статье Нагаоки только 11 марта 1911 года – после манчестерского собрания, – когда он прочитал о ней в открытке, присланной другом-физиком: «Кэмпбелл сказал мне, что Нагаока когда-то пытался предположить наличие в атоме большого положительного центра, чтобы объяснить оптические эффекты»[216]. Затем он нашел эту статью в журнале Philosophical Magazine и добавил ее обсуждение на последнюю страницу своей развернутой статьи под названием «Рассеяние α- и β-частиц веществом и строение атома», которую отправил в тот же журнал в апреле. В этой статье он писал: «Интересно отметить, что Нагаока математически рассмотрел атом “Сатурния”, который, по его предположению, состоит из центральной притягивающей массы, окруженной кольцами вращающихся электронов»[217][218].
По-видимому, однако, Нагаока был у него незадолго до этого, так как 22 февраля 1911 года японский физик писал Резерфорду из Токио, благодаря его «за тот чрезвычайно теплый прием, который Вы оказали мне в Манчестере»[219]. Однако два физика, видимо, не обсуждали атомные модели; иначе Нагаока, вероятно, продолжил бы такое обсуждение в своем письме, а Резерфорд, бывший человеком абсолютно честным, несомненно упомянул бы об этом в своей статье.
Одна из причин, по которым Резерфорд не знал о сатурнианской модели атома Нагаоки, состоит в том, что модель эта подверглась резкой критике и была отвергнута вскоре после того, как Нагаока ее предложил. Дело в том, что в ней был один крупный недостаток – тот самый теоретический дефект, который оставался и в модели атома, предложенной теперь Резерфордом[220]. Кольца Сатурна устойчивы, потому что сила, действующая между составляющими их обломочными частицами – гравитация, – создает притяжение. Однако сила, действующая между электронами сатурнианских электронных колец Нагаоки, то есть между отрицательными электрическими зарядами, – создает отталкивание. Из этого математически следует, что при наличии двух или более электронов, равномерно распределенных по орбите вращения вокруг ядра, они должны приобрести колебательные моды – неустойчивые состояния, – которые быстро приведут к распаду атома.
То, что было справедливо для сатурнианского атома Нагаоки, теоретически должно было быть справедливо и для того атома, который Резерфорд обнаружил опытным путем. Если в атоме действуют механические законы классической физики, те Ньютоновы законы, которые управляют отношениями тел в планетарных системах, то модель Резерфорда работать не может. Но модель эта не была обычным теоретическим построением. Она была получена в результате физического эксперимента. И она явно работала. Атом оставался устойчивым сколь угодно долгое время и отражал альфа-частицы как артиллерийские снаряды.
Кто-то должен был разрешить это противоречие между классической физикой и экспериментально изученным атомом Резерфорда. Для этого нужен был человек, отличный от Резерфорда: не экспериментатор, а теоретик, но теоретик, тесно связанный с реальностью. Нужно было, чтобы он обладал по меньшей мере не меньшей отвагой, чем Резерфорд, и такой же уверенностью в своей правоте. Нужно было, чтобы он был готов пройти сквозь зеркало механики в неизведанный немеханический мир, в котором происходящее на атомном уровне уже нельзя было моделировать при помощи аналогий с планетами и маятниками.
И именно такой человек, как будто специально вызванный для этого дела, внезапно появился в Манчестере. 18 марта 1912 года Резерфорд объявил о его прибытии в письме к одному американскому другу: «Датчанин Бор ушел из Кембриджа и явился сюда, чтобы набраться опыта работы с радиоактивностью»[221]. Этим датчанином был физик-теоретик Нильс Хенрик Давид Бор. Ему было двадцать семь лет.